ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-18
    Description: Ubiquinone (also known as coenzyme Q) is a ubiquitous lipid-soluble redox cofactor that is an essential component of electron transfer chains. Eleven genes have been implicated in bacterial ubiquinone biosynthesis, including ubiX and ubiD, which are responsible for decarboxylation of the 3-octaprenyl-4-hydroxybenzoate precursor. Despite structural and biochemical characterization of UbiX as a flavin mononucleotide (FMN)-binding protein, no decarboxylase activity has been detected. Here we report that UbiX produces a novel flavin-derived cofactor required for the decarboxylase activity of UbiD. UbiX acts as a flavin prenyltransferase, linking a dimethylallyl moiety to the flavin N5 and C6 atoms. This adds a fourth non-aromatic ring to the flavin isoalloxazine group. In contrast to other prenyltransferases, UbiX is metal-independent and requires dimethylallyl-monophosphate as substrate. Kinetic crystallography reveals that the prenyltransferase mechanism of UbiX resembles that of the terpene synthases. The active site environment is dominated by pi systems, which assist phosphate-C1' bond breakage following FMN reduction, leading to formation of the N5-C1' bond. UbiX then acts as a chaperone for adduct reorientation, via transient carbocation species, leading ultimately to formation of the dimethylallyl C3'-C6 bond. Our findings establish the mechanism for formation of a new flavin-derived cofactor, extending both flavin and terpenoid biochemical repertoires.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, Mark D -- Payne, Karl A P -- Fisher, Karl -- Marshall, Stephen A -- Parker, David -- Rattray, Nicholas J W -- Trivedi, Drupad K -- Goodacre, Royston -- Rigby, Stephen E J -- Scrutton, Nigel S -- Hay, Sam -- Leys, David -- BB/K017802/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/M017702/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Jun 25;522(7557):502-6. doi: 10.1038/nature14559. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK. ; Innovation/Biodomain, Shell International Exploration and Production, Westhollow Technology Center, 3333 Highway 6 South, Houston, Texas 77082-3101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083743" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/chemistry/metabolism ; Aspergillus niger/enzymology/genetics ; *Biocatalysis ; Carboxy-Lyases/chemistry/genetics/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Cycloaddition Reaction ; Decarboxylation ; Dimethylallyltranstransferase/chemistry/genetics/*metabolism ; Electron Transport ; Flavin Mononucleotide/metabolism ; Flavins/biosynthesis/chemistry/*metabolism ; Models, Molecular ; Pseudomonas aeruginosa/*enzymology/genetics/*metabolism ; Ubiquinone/*biosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...