ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-06-20
    Description: The ligand-binding domain of nuclear receptors contains a transcriptional activation function (AF-2) that mediates hormone-dependent binding of coactivator proteins. Scanning surface mutagenesis on the human thyroid hormone receptor was performed to define the site that binds the coactivators, glucocorticoid receptor-interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1). The residues involved encircle a small surface that contains a hydrophobic cleft. Ligand activation of transcription involves formation of this surface by folding the carboxyl-terminal alpha helix against a scaffold of three other helices. These features may represent general ones for nuclear receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, W -- Ribeiro, R C -- Wagner, R L -- Nguyen, H -- Apriletti, J W -- Fletterick, R J -- Baxter, J D -- Kushner, P J -- West, B L -- DK09516/DK/NIDDK NIH HHS/ -- DK51281/DK/NIDDK NIH HHS/ -- P41-RR01081/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1747-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolic Research Unit, Box 0540, University of California San Francisco, San Francisco, CA 94143-0540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624051" target="_blank"〉PubMed〈/a〉
    Keywords: HeLa Cells ; Histone Acetyltransferases ; Humans ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 2 ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Retinoic Acid/metabolism ; Receptors, Thyroid Hormone/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Transcription Factors/*metabolism ; *Transcriptional Activation ; Triiodothyronine/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-11-29
    Description: The three-dimensional structure of the activated state of glycogen phosphorylase (GP) as induced by adenosine monophosphate (AMP) has been determined from crystals of pyridoxalpyrophosphoryl-GP. The same quaternary changes relative to the inactive conformation as those induced by phosphorylation are induced by AMP, although the two regulatory signals function through different local structural mechanisms. Moreover, previous descriptions of the phosphorylase active state have been extended by demonstrating that, on activation, the amino- and carboxyl-terminal domains of GP rotate apart by 5 degrees, thereby increasing access of substrates to the catalytic site. The structure also reveals previously unobserved interactions with the nucleotide that accounts for the specificity of the nucleotide binding site for AMP in preference to inosine monophosphate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sprang, S R -- Withers, S G -- Goldsmith, E J -- Fletterick, R J -- Madsen, N B -- R01 DK26081/DK/NIDDK NIH HHS/ -- R01 DK31507/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1367-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1962195" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/*pharmacology ; Amino Acid Sequence ; Binding Sites ; Enzyme Activation ; Macromolecular Substances ; Models, Molecular ; Phosphorylase b/chemistry/*metabolism ; Protein Conformation ; Pyridoxal Phosphate/analogs & derivatives/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-08-04
    Description: The crystal structure of glycogen phosphorylase a complexed with its substrates, orthophosphate and maltopentaose, has been determined and refined at a resolution of 2.8 angstroms. With oligosaccaride bound at the glycogen storage site, the phosphate ion binds at the catalytic site and causes the regulatory and catalytic domains to separate with the loss of stabilizing interactions between them. Homotropic cooperativity between the active sites of the allosteric dimer results from rearrangements in isologous contacts between symmetry-related helices in the subunit interface. The conformational changes in the core of the interface are correlated with those observed on covalent activation by phosphorylation at Ser14 (phosphorylase b----a).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldsmith, E J -- Sprang, S R -- Hamlin, R -- Xuong, N H -- Fletterick, R J -- DK31507-05/DK/NIDDK NIH HHS/ -- GM00085-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2756432" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Crystallization ; Crystallography ; Enzyme Activation ; Glucosephosphates/metabolism ; Glycogen/metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Oligosaccharides ; Phosphates/metabolism ; Phosphorylase a/*metabolism ; Phosphorylases/*metabolism ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-09-13
    Description: A phosphorylation-initiated mechanism of local protein refolding activates yeast glycogen phosphorylase (GP). Refolding of the phosphorylated amino-terminus was shown to create a hydrophobic cluster that wedges into the subunit interface of the enzyme to trigger activation. The phosphorylated threonine is buried in the allosteric site. The mechanism implicates glucose 6-phosphate, the allosteric inhibitor, in facilitating dephosphorylation by dislodging the buried covalent phosphate through binding competition. Thus, protein phosphorylation-dephosphorylation may also be controlled through regulation of the accessibility of the phosphorylation site to kinases and phosphatases. In mammalian glycogen phosphorylase, phosphorylation occurs at a distinct locus. The corresponding allosteric site binds a ligand activator, adenosine monophosphate, which triggers activation by a mechanism analogous to that of phosphorylation in the yeast enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, K -- Rath, V L -- Dai, S C -- Fletterick, R J -- Hwang, P K -- DK32822/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 Sep 13;273(5281):1539-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California at San Francisco, 513 Parnassus, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703213" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Allosteric Site ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Enzyme Activation ; Enzyme Inhibitors/metabolism/pharmacology ; Glucose-6-Phosphate ; Glucosephosphates/metabolism/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Phosphorylases/antagonists & inhibitors/*chemistry/*metabolism ; Phosphorylation ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perona, J J -- Craik, C S -- Fletterick, R J -- DK-39304/DK/NIDDK NIH HHS/ -- GM13818-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 30;261(5121):620-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342029" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Crystallization ; Hydrogen Bonding ; Protein Conformation ; Serine Endopeptidases/*chemistry ; Trypsin/chemistry ; Water/*analysis ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-04-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, F E -- Pan, K M -- Huang, Z -- Baldwin, M -- Fletterick, R J -- Prusiner, S B -- New York, N.Y. -- Science. 1994 Apr 22;264(5158):530-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143-0518.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909169" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Mice ; Mice, Transgenic ; Models, Biological ; Mutation ; PrPSc Proteins ; Prion Diseases/*metabolism/transmission ; Prions/*biosynthesis/chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...