ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-02-07
    Description: The three-dimensional structure of the human immunodeficiency virus-type 1 (HIV-1) nucleocapsid protein (NC) bound to the SL3 stem-loop recognition element of the genomic Psi RNA packaging signal has been determined by heteronuclear magnetic resonance spectroscopy. Tight binding (dissociation constant, approximately 100 nM) is mediated by specific interactions between the amino- and carboxyl-terminal CCHC-type zinc knuckles of the NC protein and the G7 and G9 nucleotide bases, respectively, of the G6-G7-A8-G9 RNA tetraloop. A8 packs against the amino-terminal knuckle and forms a hydrogen bond with conserved Arg32, and residues Lys3 to Arg10 of NC form a 310 helix that binds to the major groove of the RNA stem and also packs against the amino-terminal zinc knuckle. The structure provides insights into the mechanism of viral genome recognition, explains extensive amino acid conservation within NC, and serves as a basis for the development of inhibitors designed to interfere with genome encapsidation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Guzman, R N -- Wu, Z R -- Stalling, C C -- Pappalardo, L -- Borer, P N -- Summers, M F -- GM32691/GM/NIGMS NIH HHS/ -- GM42561/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):384-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland-Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430589" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Gene Products, gag/*chemistry/metabolism ; Genome, Viral ; HIV-1/*chemistry/genetics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleocapsid/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Viral/*chemistry/genetics/metabolism ; Zinc/chemistry/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-07-12
    Description: The three-dimensional structure of the amino-terminal core domain (residues 1 through 151) of the human immunodeficiency virus-type 1 (HIV-1) capsid protein has been solved by multidimensional heteronuclear magnetic resonance spectroscopy. The structure is unlike those of previously characterized viral coat proteins and is composed of seven alpha helices, two beta hairpins, and an exposed partially ordered loop. The domain is shaped like an arrowhead, with the beta hairpins and loop exposed at the trailing edge and the carboxyl-terminal helix projecting from the tip. The proline residue Pro1 forms a salt bridge with a conserved, buried aspartate residue (Asp51), which suggests that the amino terminus of the protein rearranges upon proteolytic maturation. The binding site for cyclophilin A, a cellular rotamase that is packaged into the HIV-1 virion, is located on the exposed loop and encompasses the essential proline residue Pro90. In the free monomeric domain, Pro90 adopts kinetically trapped cis and trans conformations, raising the possibility that cyclophilin A catalyzes interconversion of the cis- and trans-Pro90 loop structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gitti, R K -- Lee, B M -- Walker, J -- Summers, M F -- Yoo, S -- Sundquist, W I -- AI30917/AI/NIAID NIH HHS/ -- CA 42014/CA/NCI NIH HHS/ -- GM 42561/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):231-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21228, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662505" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Amino Acid Sequence ; Aspartic Acid/chemistry ; Binding Sites ; Capsid/*chemistry/metabolism ; Carrier Proteins/metabolism ; HIV Core Protein p24/*chemistry/metabolism ; HIV-1/*chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Proline/chemistry ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Virion/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...