ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-09-23
    Description: Several cellular proteins form stable complexes with the proteins encoded by the adenovirus early region 1A (E1A) gene in extracts derived from adenovirus infected or transformed cells. Two of the cellular proteins that bind to E1A have been identified; one, a 105-kilodalton protein (pRb), is the product of the retinoblastoma gene, and the other, a 60-kilodalton protein, is a human cyclin A. Two other proteins that bind E1A have now been shown to be related to p34cdc2. This E1A complex displayed histone H1-specific kinase activity; the kinase activity was modulated during the cell division cycle, and association of pRb with E1A apparently was not required for this activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giordano, A -- Lee, J H -- Scheppler, J A -- Herrmann, C -- Harlow, E -- Deuschle, U -- Beach, D -- Franza, B R Jr -- New York, N.Y. -- Science. 1991 Sep 13;253(5025):1271-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Freeman Laboratory of Cancer Cell Biology, Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1653969" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus Early Proteins ; Adenoviruses, Human/*genetics ; CDC2 Protein Kinase/*metabolism ; *Cell Cycle ; Cell Line ; Cell Transformation, Neoplastic ; DNA-Binding Proteins/metabolism ; HeLa Cells/cytology/physiology ; Humans ; Oncogene Proteins, Viral/genetics/*metabolism ; Protamine Kinase/*metabolism ; Protein Binding ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-04-06
    Description: The complex containing the Mre11, Rad50, and Nbs1 proteins (MRN) is essential for the cellular response to DNA double-strand breaks, integrating DNA repair with the activation of checkpoint signaling through the protein kinase ATM (ataxia telangiectasia mutated). We demonstrate that MRN stimulates the kinase activity of ATM in vitro toward its substrates p53, Chk2, and histone H2AX. MRN makes multiple contacts with ATM and appears to stimulate ATM activity by facilitating the stable binding of substrates. Phosphorylation of Nbs1 is critical for MRN stimulation of ATM activity toward Chk2, but not p53. Kinase-deficient ATM inhibits wild-type ATM phosphorylation of Chk2, consistent with the dominant-negative effect of kinase-deficient ATM in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ji-Hoon -- Paull, Tanya T -- CA94008/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15064416" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia/genetics ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Checkpoint Kinase 2 ; DNA/metabolism ; *DNA Repair Enzymes ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; Histones/metabolism ; Humans ; Mutation ; Mutation, Missense ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Proteins/metabolism ; Tumor Suppressor Protein p53/metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-03-26
    Description: The ataxia-telangiectasia mutated (ATM) kinase signals the presence of DNA double-strand breaks in mammalian cells by phosphorylating proteins that initiate cell-cycle arrest, apoptosis, and DNA repair. We show that the Mre11-Rad50-Nbs1 (MRN) complex acts as a double-strand break sensor for ATM and recruits ATM to broken DNA molecules. Inactive ATM dimers were activated in vitro with DNA in the presence of MRN, leading to phosphorylation of the downstream cellular targets p53 and Chk2. ATM autophosphorylation was not required for monomerization of ATM by MRN. The unwinding of DNA ends by MRN was essential for ATM stimulation, which is consistent with the central role of single-stranded DNA as an evolutionarily conserved signal for DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ji-Hoon -- Paull, Tanya T -- CA094008/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):551-4. Epub 2005 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790808" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Cell Line ; DNA/chemistry/*metabolism ; *DNA Damage ; DNA Repair ; DNA Repair Enzymes/genetics/*metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dimerization ; Enzyme Activation ; Humans ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Nucleic Acid Conformation ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Recombinant Proteins/metabolism ; Serine ; Signal Transduction ; Transfection ; Tumor Suppressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...