ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 207 (1980), S. 81-88 
    ISSN: 1432-0878
    Keywords: Presynaptic density ; Neuromuscular synapse ; Synaptic vesicles ; Crustaceans ; Serial section electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The threedimensional ultrastructure of presynaptic dense bars was examined by serial section electron microscopy in the excitatory neuromuscular synapses of the accessory flexor muscle in the limbs of larval, juvenile, and adult lobsters. The cross-sectional profile of the dense bar resembles an asymmetric hourglass, the part contacting the presynaptic membrane being larger than that projecting into the terminal. The bar has a height of 55–65 nm and varies in length from 75–600 nm. In its dimensions it resembles the dense projections in the synapses of the CNS of insects and vertebrates. The usual location of these dense bars is at well defined synapses, though a few are found at extrasynaptic sites either in the axon or terminal. In the latter case the bars are close to synapse-bearing regions, particularly in the larval terminals, suggesting that the extrasynaptic bars denote early events in synapse formation. In all cases the bars are intimately associated with electron lucent, synaptic vesicles located on either side, in the indentation of its hourglass-shaped cross sectional profile. The vesicles occur along the length of the bar and contact the presynaptic membrane. Consequently the dense bar may serve to align the vesicles at the presynaptic membrane prior to exocytosis. A similar role has been suggested for the presynaptic dense bodies at the neuromuscular junction of the frog, where synaptic vesicles form a row on either side of this structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 198 (1979), S. 455-463 
    ISSN: 1432-0878
    Keywords: Neuromuscular synapses ; Presynaptic density ; Ultrastructure ; Serial sections ; Crustaceans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Representative examples of lowand high-output neuromuscular synapses between motoneuron and distal accessory flexor muscle of the lobster were selected on the basis of their mean quantal content, and subsequently analysed by serial section electron microscopy. The high-output terminal has twice as many synapses as the low-output terminal. However, since the mean surface area of synapses is significantly smaller in the high-output terminal than in the low-output one, the total synaptic surface area between the two types of terminals is similar. Also, though the high-output terminal possesses a greater number of presynaptic dense bodies than its low-output counterpart, the mean number per synapse is similar for the two terminals. The terminals, however, differ significantly in the size of their dense bodies. Thus both the mean and total surface area of these bodies is greater in the high-output terminal than in the low-output one. Moreover, the mean ratio of dense body area to synaptic area is significantly greater for the high-output terminal than for its low-output counterpart. This difference in dense body area parallels the difference in quantal content of synaptic transmission between the lowand high-output terminals and supports the hypothesis that presynaptic densities represent the ultrastructural correlates of transmitter mobilization and/or release.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...