ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pre‐breeding season  (1)
  • Wing length  (1)
  • multivariate normal distribution  (1)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Animal Ecology 87 (2018): 906-920, doi:10.1111/1365-2656.12827.
    Description: Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long‐lived migratory seabird breeding in the southern ocean: the black‐browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: “Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?” We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry‐over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at‐sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre‐breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry‐over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle.
    Description: NSF Grant Number: OPP‐1246407; European Research Council Advanced Grant Grant Numbers: ERC‐2012‐ADG_20120314, 322989
    Keywords: Birds ; Climate change ; Foraging behaviours ; Non‐breeding season ; Phenotypic traits ; Pre‐breeding season ; Timing of breeding ; Wing length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fay, R., Authier, M., Hamel, S., Jenouvrier, S., van de Pol, M., Cam, E., Gaillard, J.-M., Yoccoz, N. G., Acker, P., Allen, A., Aubry, L. M., Bonenfant, C., Caswell, H., Coste, C. F. D., Larue, B., Le Coeur, C., Gamelon, M., Macdonald, K. R., Moiron, M., Nicol-Harper, A., Pelletier, F., Rotella J. J., Teplitsky, C., Touzot, L., Wells, C. P., Saether, B.-E. Quantifying fixed individual heterogeneity in demographic parameters: performance of correlated random effects for Bernoulli variables. Methods in Ecology and Evolution, 00, (2021): 1–14, https://doi.org/10.1111/2041-210X.13728.
    Description: 1. An increasing number of empirical studies aim to quantify individual variation in demographic parameters because these patterns are key for evolutionary and ecological processes. Advanced approaches to estimate individual heterogeneity are now using a multivariate normal distribution with correlated individual random effects to account for the latent correlations among different demographic parameters occurring within individuals. Despite the frequent use of multivariate mixed models, we lack an assessment of their reliability when applied to Bernoulli variables. 2. Using simulations, we estimated the reliability of multivariate mixed effect models for estimating correlated fixed individual heterogeneity in demographic parameters modelled with a Bernoulli distribution. We evaluated both bias and precision of the estimates across a range of scenarios that investigate the effects of life-history strategy, levels of individual heterogeneity and presence of temporal variation and state dependence. We also compared estimates across different sampling designs to assess the importance of study duration, number of individuals monitored and detection probability. 3. In many simulated scenarios, the estimates for the correlated random effects were biased and imprecise, which highlight the challenge in estimating correlated random effects for Bernoulli variables. The amount of fixed among-individual heterogeneity was frequently overestimated, and the absolute value of the correlation between random effects was almost always underestimated. Simulations also showed contrasting performances of mixed models depending on the scenario considered. Generally, estimation bias decreases and precision increases with slower pace of life, large fixed individual heterogeneity and large sample size. 4. We provide guidelines for the empirical investigation of individual heterogeneity using correlated random effects according to the life-history strategy of the species, as well as, the volume and structure of the data available to the researcher. Caution is warranted when interpreting results regarding correlated individual random effects in demographic parameters modelled with a Bernoulli distribution. Because bias varies with sampling design and life history, comparisons of individual heterogeneity among species is challenging. The issue addressed here is not specific to demography, making this warning relevant for all research areas, including behavioural and evolutionary studies.
    Description: They acknowledge the support of NSF OPP 1640481 and 1840058 to J.R. and S.J. respectively.
    Keywords: accuracy ; among-individual variation ; capture–recapture ; GLMMs ; individual quality ; joint mixed models ; multivariate normal distribution ; precision
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...