ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 41 (1997), S. 673-702 
    ISSN: 0006-3525
    Keywords: protein folding ; coupling effect ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A 1-4 and 2-3 residue-correlation model is proposed to predict the β-turns in proteins. The average rate of correct prediction for the 455 β-turn tetrapeptides and 4018 non-β-turn tetrapeptides in the training data base is 80.1%, and that for the 223 β-turn tetrapeptides and 12562 non-β-turn tetrapeptides in the testing data base is 80.9%. Compared with the rates of correct prediction based on the residue-independent model reported previously, the quality of prediction is significantly improved by the new model, implying that the correlation effect between the 1st and the 4th residues and that between the 2nd and 3rd residues along a tetrapeptide are important for forming a β-turn in a protein during the process of its folding. © 1997 John Wiley & Sons, Inc. Biopoly 41: 673-702, 1997
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 34 (1994), S. 143-153 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Microtubules, which play many diverse and important roles in biological systems, are usually made up of 13 nearly axial protofilaments formed from individual tubulin molecules. In this paper, a nonlinear dynamic model has been developed to elucidate the mechanism of the internal motion occurring during the assembly of microtubules. The results derived from the model indicate that such internal motion is associated with a solitary wave, or kink, excited by the energy released from the hydrolysis of GTP ⇒ GDP in microtubular solutions. As the kink moves forward, the individual tubulin molecules involved in the kink undergo motions that can be likened to the dislocation of atoms within the crystal lattice. Thus, the dynamic instability of microtubules may be characterized by a series of dislocation motions of the tubulin molecules. An energy estimate shows that a kink in the system possesses about 0.36-0.44 eV, which is quite close to but smaller than the 0.49 eV of energy released from the hydrolysis of GTP. Therefore, the relevant energy derived from our model is fully consistent with experimental observations; this finding also suggests that the hydrolysis energy may be responsible for exciting the solitary wave, or kink, leading to tubulin dislocation in microtubules.Our model, and its intrinsic properties, i.e., dynamic nonlinearity, thermodynamic irreversibility, as well as an energy input from a sustained source, implies that the growth of microtubules is a typical dissipative process and that their structure in vivo is typical of dissipative structures. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...