ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 1627-1639 
    ISSN: 0887-6266
    Keywords: semi-IPN ; crystallization ; phase separation ; compatability ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Differential scanning calorimetry together with dynamic mechanical analysis were employed to investigate the crystallinity and the miscibility in poly(ethylene oxide)/crosslinked poly(methyl methacrylate) semi-IPN (interpenetrating polymer networks). The crystallinity of poly(ethylene oxide) in the semi-IPN is found to depend on the crosslink density of PMMA as well as the overall content of PEO. Of special interest is that an increase in the crosslink density tends to increase the crystallinity contrary to our expectation, indicating crystallization and phase separation may proceed simultaneously during IPN formation. The investigation of glass transition behaviors with dynamic mechanical analysis suggests phase separation (i.e., there exist two amorphous phases: one PEO-rich phase, the other a PMMA-rich phase). © 1993 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 2 (1991), S. 31-40 
    ISSN: 1042-7147
    Keywords: Dynamic curing ; EPDM and ionomer blends ; rheology ; crystallization and Morphology ; Thermoplastic interpenetrating polymer network ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The structure and properties of dynamically cured ethylene-propylene-diene terpolymer (EPDM) and ionomer blends have been studied. The blends were prepared in a laboratory internal mixer, where EPDM was cured under shear in the presence of ionomer with dicumyl peroxide (DCP) under different shear conditions. The effects of EPDM/ionomer compositions, DCP concentration and the intensity of shear mixing were investigated using capillary rheometer, differential scanning calorimeter (DSC) and scanning electron microscopy (SEM) techniques. Two kinds of poly(ethylene-co-methacrylic acid) ionomers containing different metal ions(Na+ and Zn++) were compared and the effect of the metal ion type for neutralization was considered. The Zn-neutralized ionomer showed better miscibility with EPDM than the Na-neutralized ionomer. It is concluded from the rheological properties, crystallization behavior and morphology that the dynamically cured EPDM and Zn-ion ionomer blends show the behavior of a thermoplastic interpenetrating polymer network (IPN).
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 1 (1990), S. 211-217 
    ISSN: 1042-7147
    Keywords: Phase separation ; Curing ; Vitrification ; Light scattering ; ATBN ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The vitrification effect during the curing reaction of amine terminated butadiene acrylonitrile copolymer-(ATBN)-modified epoxy resin is studied by the differential scanning calorimetry. A new reaction kinetic equation is derived to describe the effect of vitrification on the reaction rate at both glassy and rubbery state of reactants. ATBN is added to improve the impact properties of the cured epoxy resin. The phase separation behavior during the curing reaction is analyzed by the light scattering and turbidity experiments. From the results of the cloud point measurements, it is observed that the ATBN-epoxy system showed upper critical solution temperature (UCST) behavior. From the results of the light scattering experiments, the domain correlation length increases as the content of ATBN increases.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 7 (1996), S. 209-220 
    ISSN: 1042-7147
    Keywords: phase separation ; morphology ; polyetherimide ; epoxy ; emi-IPN ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The phase separation behavior and the morphology of polyetherimide (PEI)-modified diglycidyl ether of bisphenol A (DGEBA) epoxy resin were studied using scanning electron microscopy and light scattering. Reaction kinetics, cloud point and onset of gelation were determined by differential scanning calorimeter, optical microscope and physica rheometer, respectively. The mixture of partially cured epoxy and PEI showed bimodal upper critical solution temperature (UCST) behavior. For PEI content smaller than 10 wt%, the blends exhibited a sea-island morphology formed via nucleation and a growth mechanism. Above 25 wt% PEI content, the phase separation proceeded via a spinodal decomposition mechanism and a nodular structure was formed. With PEI content between 15 and 20 wt%, dual phase morphology was observed. This morphology was formed via primary spinodal decomposition and secondary phase separation within the dispersed phases and the matrix phases formed by the primary phase separation. This morphology was presumed to be formed in the reaction-induced phase separation mechanism with the mixture showing bimodal UCST behavior. The curing temperature had an effect on the final morphology, and the modulus of PEI-modified epoxy was influenced by the phase separation.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 7 (1996), S. 195-195 
    ISSN: 1042-7147
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 21 (1977), S. 1289-1295 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The engineering properties of polyurethane-poly(methyl methacrylate) simultaneous interpenetrating networks (SIN's) were evaluated. The hardness behavior reflected the observed phase inversion in the electron-microscopic studies. The maximum ultimate tensile strength was observed at 85% polyurethane-15% poly(methyl methacrylate) IPN and was due to the filler-reinforcing effect of the rigid poly(methyl methacrylate) phase. The ultimate tensile strenght of the 75/25 polyurethane-poly(methyl methacrylate) IPN was higher than that of the corresponding pseudo-IPN's (only one network crosslinked) and the linear blend. The leathery and glassy compositions did not show any reinforcement in the ultimate tensile strength. This indicated that the reinforcement in the ultimate tensile strength was not directly related to interpenetration (by increased physical entanglement crosslinks), but indirectly related by reducing the rigid phase domain sizes and increasing the adhesion between the two phases, thus enhancing the filler-reinforcing effect similar to that observed in a carbon black-filled rubber. The tear strengths of the polyurethane-rich IPN's pseudo-IPN's, and linear blends were found to be higher than that of the pure polyurethane as a combined result of increased modulus and tensile strength. The weight retentions in the thermal decomposition of the IPN's, pseudo-IPN's, and linear blends were higher than the proportional average of the component networks. The results seemed to indicate that this enhancement was related to the presence of the unzipped methyl methacrylate monomer. It was suggested that the monomers acted as radical scavengers in the polyurethane degradation, thus delaying the further reaction of the polyurethane radicals into volatile amines, isocyanates, alcohols, olefins, and carbon dioxide.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...