ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (6)
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of ethidium's intercalative binding to DNA packaged in bacteriophage T7 and two T7 deletion mutants have been determined, using enhancement of fluorescence to quantitate binding. At a constant ethidium concentration, the results can be described as first-order binding with two different rate constants, k1* (= k1 + k-1) and k2* (= k2 + k-2). The larger rate constant (k1*) was at least four orders of magnitude smaller than the comparable first-order forward rate constant for binding to DNA released from its capsid. At 25°C values of k1* decreased as the amount of DNA packaged per internal volume increased. This latter observation indicates that the rate of ethidium's binding to packaged T7 DNA is limited by an event that occurs inside of the DNA-containing region of T7, not by the crossing of T7 capsid's outer shell. Arrhenius plots of kM1* are biphasic, indicating a transition for packaged DNA at a temperature of 20°C. The data indicate that k1* s are limited by either sieving of ethidium during its passage through the packaged DNA or subsequent hindered intercalation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 29 (1990), S. 1863-1866 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gel electrophoresis of spherical particles with a radius above 0.2 μm has not been reported yet. In the present study, video phase-contrast light microscopy is used to observe the motion of individual latex spheres, 0.52 μm in radius, during electrophoresis in 0.1% agarose gels. At 2V/cm, the spheres initially migrate in the direction of the electrical field. However, each sphere eventually undergoes a cessation of all motion. Brownian motion is restored when the electrical potential gradient is reduced to zero. Arrest can be prevented by periodically inverting the direction of the electrical field. These observations are explained by electrical field- induced steric trapping of the spheres by gel fibers. Inversion of the electrical field should assist the application of agarose gel electrophoresis to micron sized cellular organelles and cells.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 28 (1989), S. 1475-1484 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: By use of agarose gel electrophoresis, the sieving of spherical particles in agarose gels has been quantitated and modeled for spheres with a radius (R) between 13.3 and 149 mm. For quantitation, the electrophoretic mobility has been determined as a function of agarose percentage (A). Because a previously used model of sieving [D. Rodbard and A. Chrambach (1970) Proc. Natl. Acad. Sci. USA 65, 970-977] was found incompatible with some of these data, alternative models have been tested. By use of an underivatized agarose, two models, both based on the assumption of a single effective pore radius (PE) for each A, were found to yield PE values that were independent of R and that were in agreement with values of PE obtained independently (PE = 118 nm × A-0.74): sieving by altered hydrodynamics in a cylindrical tube of radius, PE, and sieving by steric exclusion from a circular hole of radius, PE. The same analysis applied to a 6.5% hydroxyethylated commercial agarose yileded a steeper PE vs A plot and also agreement of the above tow models with the data. The PE vs A plot was significantly altered by both further hydroxyethylation and factors that cause variation in the electro-osmosis found in commercial agarose.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 24 (1985), S. 1635-1646 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Equilibrium binding of ethidium, quantitated by fluorescence enhancement, to DNA packaged in bacteriophage T7 and T7 deletion mutants has been compared with the binding of this dye to DNA released from its capsid (free DNA). During achievement of apparent equilibrium binding, no change in bacteriophage T7 structure occurred, by the criterion of agarose gel electrophoresis. However, excessive incubation with ethidium bromide caused detectable changes in bacteriophage structure, a possible explanation of disagreements in similar studies previously performed with T-even bacteriophages. Scatchard plots for packaged DNA had a curvature greater than the previously demonstrated [Bresloff, J. L. & Crothers, D. M. (1981) Biochemistry 20, 3547-3553] curvature for free DNA. By treating plots for packaged DNA as though they were biphasic, it was found that binding to most sites occurred with an apparent association constant (Kap) 3.3-4.3 times lower than the Kap of free DNA. The number of these sites increased significantly as the density of packaged DNA was decreased by use of the deletion mutants. Values of ΔH° for these sites were negative and equal to the ΔH° for free DNA; values of ΔS° were positive and about half the ΔS° for free DNA. A second class of sites, roughly 1.2% of the total, had a significantly higher Kap and more negative ΔH° than those of the majority of sites.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The sieving of rod-shaped viruses during agarose gel electrophoresis is quantitatively analyzed here with a previously proposed model [G. A. Griess et al. (1989) Biopolymers, 28, 1475-1484] that has one radius (PE) of the effective pore at each concentration of gel. By use of this model and an internal spherical size standard, a plot of electrophoretic mobility vs agarose percentage is converted to a plot of the radius of the effective sphere (effective radius) vs PE. Experimentally, when the concentration of the rod-shaped bacteriophage, fd, is progressively increased, eventually the electrophoretic mobility of fd becomes dependent on its concentration. The concentration of fd at which this occurs decreases as the agarose concentration decreases. After avoiding this dependence on the concentration of sample, the effective radius of rod-shaped particles, including bacteriophage fd, length variants of fd, and length variants of tobacco mosaic virus, is found to increase as PE increases until a plateau of approximately constant maximum effective radius is reached at PcE. In the region of this plateau, the effective sphere's measure that best approximates that of the rod is surface area. However, significant disagreement with the data exists for surface area; the maximum effective radius for fd varies as (length)0.69. For fd and its length variants, the value of 2·PcE/length increases from 0.21 to 0.86 as the length decreases from 2808 to 367 nm. The dependence of effective radius on PE and the proximity of 2·PcE to the length of the rod are explained by (a) random orientation of rods at PE values in the region of the plateau, and (b) increasingly preferential end-first orientation (reptation) of the rod as PE decreases below PcE. This hypothesis of reptation is supported by a significant dependence of electrophoretic mobility on electrical potential gradient for a PE below, but not above, PcE. The dependence of 2·PcE/length on length is not rigorously understood, but is qualitatively explained by flexibility of the rods. This apparent flexibility has thus far prevented determination of a rod's axial ratio from quantitation of sieving during agarose gel electrophoresis. The electrical potential dependence of electrophoretic mobility is determined here by a procedure of two-dimensional agarose gel electrophoresis. This procedure is also useful for detecting rod-shaped particles in heterogeneous mixtures of predominantly spherical particles.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The permeability of bacteriophage T4 and the change in T4 permeability caused by mutation to osmotic shock resistance are investigated here by quantification of the kinetics with which both a DNA-specific probe (ethidium) and a protein-specific probe [1,1′-bi(4-anilino) naphthalene-5,5′-di-sulfonic acid, or bis-ANS] bind to T4. In the case of an osmotic shock-resistant mutant, T40s41, both ethidium and bis-ANS bind with first order kinetics. The first-order rate constant (k*) for both bis-ANS and ethidium is a function of anion type and concentration. Adenosine triphosphate, phosphate, bisulfite, sulfate, and acetate anions all reduce k* below the k* observed when chloride is the only anion. When chloride is the only anion at 25°C, k* values for binding to T40s41 are orders of magnitude above k* values for binding to wild-type T4 (T4wt). At 25°C, k* forT4wt is too small to measure, but k* for T4wt increases at 50-55°C to values approaching those measured for T40s41, without inactivating T4wt, when chloride is the only anion; during heating, T4wt is stabilized by both ethidium and bis-ANS. Binding to T4wt is reversible at 50-55°C, but not at 25°C. Equilibrium binding of bis-ANS to T40s41 reveals 112 ± 24 sites per T4 capsid. Equilibrium binding of ethidium to T40s41 reveals both high- and low-affinity sites previously observed in the packaged DNA of other bacteriophages. The ATP-induced decrease in k* is not accompanied by a decrease in equilibrium binding. The following hypotheses are presented to explain the above data: (a) All detected bis-ANS binding sites on T4 are interior to the outer surface of T4. (b) The value of k* for both bis-ANS and ethidium is controlled at the port(s) of passage through the outer shell of the T4 capsid. (c) The anions present control k* values at the port(s) of entry, probably by controlling the size of this port. The effects on k* of phosphate explain the otherwise paradoxical observation [P. J. McCall and V. A. Bloomfield (1976) Biopolymers 15, 2323-2336] that in a phosphate buffer the permeabilities of T4wt and T40s41 are the same.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...