ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 845-859 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The rheology and development of the texture of immiscible polymer blends based on poly(ethylene terephthalate) (PET) and nylon 6,6 at composition ratios of 75/25, 50/50, and 25/75 w/w PET/nylon 6,6 were studied. The blends were prepared by mixing in an extruder and by dry blending and mixing between cone-and-plate fixtures in a nitrogen atmosphere. The rheology of these blends was found to be a function of both polymer degradation and the two-phase morphology. An accelerated degradation rate in air was observed for the 75/25 and 50/50 w/w PET/nylon 6,6 blends relative to the neat polymers while the blend at a weight ratio of 25/75 w/w PET/nylon 6,6 displayed a rate of degradation similar to that of the neat polymers. The values of the steady shear viscosity (η), |η*| storage modulus (G′), and steady-state first normal stress difference (N1) for melt-blended 75/25 and 50/50 w/w PET/nylon 6,6 samples were lower than those of the neat polymers and were determined to be a consequence of the higher rate of degradation of these blends during extrusion relative to that of the neat polymers. The role played by the two-phase nature on the blends was observed for all samples prepared by dry blending and mixing in cone-and-plate fixtures under a nitrogen atmosphere and for the melt-blended 25/75 w/w PET/nylon 6,6 blend. The two-phase nature of the dry-blended samples and the extruded 25/75 w/w PET/nylon 6,6 sample resulted in values of |η*|, η, G′, and N1 which were higher than those of the neat polymers. Transient behavior observed for the blends using stepwise changes of shear rate was found to superimpose when plotted in reduced form, indicating that at rates lower than the longest relaxation time of the neat polymers there was no intrinsic time constant associated with the deformation of the interface in the blends. © 1996 John Wiley & Sons, Inc.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 16 (1978), S. 61-70 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The intrinsic viscosity [η] of dilute solutions of poly(1,4-phenylene terephthalamide) (PPPT) is found to depend strongly on sulfuric acid strength, exhibiting a maximum at about 100% H2SO4. This behavior instigated measurements of [η] and light scattering from dilute solutions of unfractionated PPPT in concentrated (≈96%) and 100% H2SO4. From [η] and weight-average molecular weight Mw relationships, Mark-Houwink exponents a were determined to be 1.36 in 96.6% and 1.62 in 100.2 ± 0.2% H2SO4, indicating that the PPPT molecule can undergo considerable expansion in 100% H2SO4. For the case of 100% H2SO4, a noticeable polyelectrolyte effect is observed in the reduced viscosity versus concentration curves. This result suggests that the repulsive charges generated along the PPPT backbone may be responsible for the change in configuration of PPPT upon increasing the acid strength from 96.6% to 100% H2SO4. It is pointed out that there is considerable experimental difficulty in measuring consistent values of Mw, and this may be the reason for the variation among published data.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 17 (1979), S. 1649-1659 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Rheological and rheo-optical data are reported for the poly(terephthalamide of p-aminobenzhydrazide), X-500, in dimethyl sulfoxide solutions in the concentration range 0.2 to 6.0 g/100 ml. The objective of these measurements is to seek evidence of shear-induced isotropic → nematic phase transition. Three types of measurement, Couette, cone and plate, and capillary rheometer, all indicate that this system exhibits flow instabilities at high shear rates and concentrations. In this region both the viscosity and the primary normal stress difference decrease with time under shear. In the capillary rheometer the apparent viscosity is smaller for shorter capillaries and, for short capillaries, there is a range of shear rates in which plug flow and a coiled extrudate are observed. These instabilities may arise from the existence of a mixture of isotropic and nematic phases. At lower shear rates, where the flow behavior appears normal, the concentration dependence of the flow birefringence increases at a critical polymer concentration Cp* This value is in reasonable accord with the concentration corresponding to the change of slope of logη (measured at low shear rate) vs. logCp. Both the latter measurements appear to be sensitive to the onset of the phenomenon, which may be due to a shear-induced transition or the rheological effect of chain entanglements.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...