ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (3)
  • estramustine phosphate  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 26 (1984), S. 113-119 
    ISSN: 1432-1041
    Keywords: estramustine phosphate ; prostatic cancer ; pharmacokinetics ; metabolism ; estramustine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The pharmacokinetics of estramustine phosphate (EMP) was studied in five prostatic cancer patients given single i.v. and oral doses of EMP in a cross-over study. Plasma and urinary concentrations of parent drug, estramustine, estromustine (the estrone analogue), estradiol and estrone were followed for 32 h. The elimination of intravenous EMP from plasma was biphasic. The mean volumes of distribution were small, being 43 and 108 ml/kg for the central and peripheral compartments, respectively. The plasma clearance was 64 ml/kg/h, and the half-lives of the two phases were 0.16 and 1.27 h. Metabolism was the major route of elimination of EMP. It was readily dephosphorylated and oxidized to yield the cytotoxic metabolites estramustine and estromustine. Estromustine was the main metabolite in plasma. When given orally EMP underwent extensive presystemic dephosphorylation, which started in the gastrointestinal tract. The relative bioavailability of estromustine after administration of EMP-capsules was 44%, which reflects incomplete absorption of EMP rather than first-pass metabolism of estromustine. The terminal half-life of estromustine was 10–20 h, which suggests that EMP might be given once or twice a day.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 38 (1990), S. 189-193 
    ISSN: 1432-1041
    Keywords: estramustine phosphate ; prostatic cancer ; gastrointestinal absorption ; food intake ; calcium ; drug interaction ; pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The effect of milk and food on the pharmacokinetics of estramustine phosphate was investigated in six patients with prostatic cancer. In a randomized three-way cross-over study, the patients were given single doses of the drug together with low calcium water, low calcium food and milk. The evaluation was based upon the plasma concentration of two metabolites, estromustine and estrone, as parent drug could not be detected in plasma. The tmax and lag time of estromustine were significantly increased by milk and food intake and Cmax and AUC were significantly decreased. In comparison with water, the AUC of estromustine was 41% when the drug was taken with milk and 67% after simultaneous intake of standardized food. Corresponding figures for the peak values were 32 and 57%, respectively. The effect of milk and food intake on the pharmacokinetics of estrone was similar. Studies in vitro demonstrated that the dissolution of estramustine phosphate disodium was markedly impaired in the presence of calcium. It was concluded that the rate and extent of absorption of estramustine phosphate were decreased when the drug was taken with milk or food due to the formation of a poorly absorbable calcium complex. To obtain high and reproducible absorption of Estracyt®, the drug should not be taken together with milk, milk products or other calcium-rich food or drugs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1451-1463 
    ISSN: 0887-6266
    Keywords: bulk modulus ; heat capacity ; high-pressure ; poly(vinyl acetate) ; thermal conductivity ; transient hot-wire method ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal conductivity λ and heat capacity per unit volume of poly(vinyl acetate) (260 kg mol-1 in weight average molecular weight) have been measured in the temperature range 150-450 K at pressures up to 1 GPa using the transient hot-wire method, which yielded λ = 0.19 W m-1 K-1 at atmospheric pressure and room temperature. The bulk modulus K has been measured in the temperature range 150-353 K up to 1 GPa. At atmospheric pressure and room temperature, K = 4.0 GPa and (∂K/∂p)T = 8.3. The volume data were used to calculate the volume dependence of λ, \documentclass{article}\pagestyle{empty}\begin{document}$g = - \left( {\frac{{\partial \lambda /\lambda }}{{\partial V/V}}} \right)_T .$\end{document} The values for g of the liquid and glassy states were 3.0 and 2.7, respectively, and g of the latter was almost independent of volume and temperature. Theoretical models can predict the value for g of the glassy state to within 25%. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1451-1463, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1781-1792 
    ISSN: 0887-6266
    Keywords: bulk modulus ; equation of state ; heat capacity ; high-pressure ; poly(isobutylene) ; thermal conductivity ; transient hot-wire method ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal conductivity λ and heat capacity per unit volume ρcp of poly(isobutylene)s, one 2.8 in weight average molecular weight and one 85 kg mol-1 in viscosity average molecular weight (PIB-2800 and PIB-85000), have been measured in the temperature range 170-450 K at pressures up to 2 GPa using the transient hot-wire method. At 297 K and atmospheric pressure, λ = 0.115 W m-1 K-1 for PIB-2800 and λ = 0.120 W m-1 K-1 for PIB-85000. The bulk modulus BT has been measured in the temperature range 170-297 K up to 1 GPa. At atmospheric pressure, the room temperature bulk moduli BT are 2.0 GPa for PIB-2800 and 2.5 GPa for PIB-85000 with dBT/dp = 10 for both. These data were used to calculate the volume dependence of λ, \documentclass{article}\pagestyle{empty}\begin{document}$$ g = - \left({{\partial\lambda/\lambda}}\over{{\partial V/V}}\right)_{T}. $$\end{document} At room temperature and atmospheric pressure (liquid phase) we find g = 3.4 for PIB-2800 and g = 3.9 for PIB-85000, but g depends strongly on temperature for both molecular weights. The difference in g between the glassy state and liquid phase is small and just outside the inaccuracy of g of about 8%. The best predictions for g are given by the theoretical model of Horrocks and McLaughlin. We have found that PIB exhibits two relaxations, where one is associated with the glass transition. The value for dTg/dp at atmospheric pressure (for the main glass transition) is about 0.21 K MPa-1 for both molecular weights. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1781-1792, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 345-355 
    ISSN: 0887-6266
    Keywords: bulk modulus ; equation of state ; heat capacity ; high pressure ; poly(propylene glycol) ; thermal conductivity ; transient hot-wire method ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal conductivity λ and heat capacity per unit volume of poly(propylene glycol) PPG (0.4 and 4.0 kg·mol-1 in number-average molecular weight) have been measured in the temperature range 150-295 K at pressures up to 2 GPa using the transient hot-wire method. At 295 K and atmospheric pressure, λ = 0.147 W m-1K-1 for PPG (0.4 kg·mol-1) and λ = 0.151 W m-1K-1 for PPG (4.0 kg·mol-1). The temperature dependence of λ is less than 4 × 10-4 W m-1K-2 for both molecular weights. The bulk modulus has been measured in the temperature range 215-295 K up to 1.1 GPa. At atmospheric pressure, the room temperature bulk moduli are 1.97 GPa for PPG (0.4 kg·mol-1) and 1.75 GPa for PPG (4.0 kg·mol-1). These data were used to calculate the volume dependence of \documentclass{article}\pagestyle{empty}\begin{document}$ \lambda ,g\, = - \left( {\frac{{\partial \lambda /\lambda }}{{\partial V/V}}} \right)_T $\end{document}. At room temperature and atmospheric pressure (liquid phase) we find g = 2.79 for PPG (0.4 kg·mol-1) and g = 2.15 for PPG (4.0 kg·mol-1). The volume dependence of g, (∂g/∂ log V)T varies between -19 to -10 for both molecular weights. Under isochoric conditions, g is nearly independent of temperature. The difference in g between the glassy state and liquid phase is small and just outside the inaccuracy of g of about 8%. The theoretical model for λ by Horrocks and McLaughlin yields an overestimate of g by up to 120%. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 345-355, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...