ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Plasma and Beam Physics  (1)
  • tributyrin  (1)
Collection
Keywords
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 1128-1132 
    ISSN: 0006-3592
    Keywords: lipolytic rates ; hydrolysis ; tributyrin ; Candida rugosa ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A dramatic change of the reaction rate was observed for the lipase-catalyzed hyrolysis of tributyrin in a batch reactor. Immediately after the addition of the enzyme, the lipolysis rate increased continuously until a maximal reaction rate was reached. The duration of the induction was mainly controlled by the bulk enzyme concentration and the reactor stirring speed. The reaction rate dropped sharply after reaching its maximal value. The lipolysis decayed at a rate of about 0.012 min-1, and was not affected by changes of the stirring speed. This decay was attributed to the fast deactivation of the surface-adsorbed lipase, and possibly to the extremely slow desorption of the inactivated species. For reaction time longer than 120 minutes, the lipolysis decreased at a much slower rate. Several mechanisms for the decay of the lipolysis rate were discussed.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-31
    Description: Author(s): R. K. Follett, J. G. Shaw, J. F. Myatt, J. P. Palastro, R. W. Short, and D. H. Froula Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configura... [Phys. Rev. Lett. 120, 135005] Published Fri Mar 30, 2018
    Keywords: Plasma and Beam Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...