ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics (General)  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.
    Keywords: Physics (General)
    Type: GSFC-E-DAA-TN31186 , Geophysical Research Letters; 796; 1; 41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We investigate the energy conversion and partition in the asymmetric reconnection diffusion region using two-dimensional particle-in-cell simulations and Magnetosphere Multiscale (MMS) mission observations. Under an upstream condition with equal temperatures in the two inflow regions, the simulation analysis indicates that the energy partition between ions and electrons depends on the distance from the X-line. Within the central electron diffusion region (EDR), nearly all dissipated electromagnetic field energies are converted to electrons. From the EDR to the ion diffusion region (IDR) scales, the rate of the electron energy gain decreases to be lower than that of ions. A magnetopause reconnection event inside the IDR observed by MMS shows comparable ion and electron energy gains, consistent with the simulation result in the transition region from EDR to IDR. At the EDR scale, the electron energization is mainly by the reconnection electric field (E(sub r)); in-plane electric fields (E(sub xz)) provide additional positive contributions near the X-line and do negative work on electrons beyond the EDR. The guide field reduces the electron energization by both E(sub r) and E(sub xz) in the EDR. For ion energization, E(sub r) and E(sub xz) have comparable contributions near the time of the peak reconnection rate, while E(sub xz) dominants at later time. At the IDR scale, the guide field causes asymmetry in the amount of the energy gain and energization mechanisms between two exhausts but does not have significant effects on energy partition. Our study advances understanding of ion and electron energization in asymmetric reconnect IDRs.
    Keywords: Physics (General)
    Type: GSFC-E-DAA-TN66022 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9380); 123; 10; 8185-8205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...