ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenz"Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.
    Keywords: Physics (General); Computer Programming and Software
    Type: GSFC-E-DAA-TN49290 , Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN 0022-4073); 205; 241-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-05
    Description: A recently developed FORTRAN program computing far-field optical observables for spherical particles in an absorbing medium has exhibited numerical instability arising when the product of the particle vacuum size parameter and the imaginary part of the refractive index of the host becomes sufficiently large. We offer a simple analytical explanation of this instability and propose a compact numerical algorithm for the stable computation of LorenzMie coefficients based on an upward recursion formula for spherical Hankel functions of a complex argument. Extensive tests confirm an excellent accuracy of this algorithm approaching machine precision. The improved public-domain FORTRAN program is available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html.
    Keywords: Physics (General); Computer Programming and Software
    Type: GSFC-E-DAA-TN57769 , Journal of Quantitative Spectroscopy and Radiative Transfer (e-ISSN 0022-4073); 217; 274-277
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...