ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 8 (1970), S. 1713-1722 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The mechanical and optical properties of a polyester-styrene copolymer have been investigated by means of drop tests at strain rates from 38 to 113 sec-1 for strains less than 50%. Over this range of rates, the optical behavior was found to be linear with strain and independent of strain rate while the elastic-plastic mechanical behavior was only slightly dependent on strain rate. Comparison with the results of similar experiments at lower strain rates achieved by means of an Instron tester reveals that both mechanical and optical properties vary significantly with strain rate. The variation of flow stress with strain rate was found to obey a power law.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 347-357 
    ISSN: 0887-6266
    Keywords: polypyrrole ; electrical conductivity ; composite ; surfaces ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Electrically conductive composite surfaces were prepared by a diffusion-controlled in situ polymerization of pyrrole in the surface layer of sulfonated polystyrene ionomer films. Premolded films of the ionomer sulfonic acid derivatives were sequentially immersed in aqueous solutions of pyrrole and FeCl3, and polymerization occurred only where both the monomer and the oxidant were present. The penetration of the polypyrrole (PPy) into the film was controlled by varying the immersion time in the monomer solution. The amount of PPy produced depended on the immersion time of the film in the monomer and the degree of sulfonation of the ionomer. Surface conductivities of 10-4-10-1 S/cm were achieved with PPy concentrations from 2 to 22 wt % and composite layers as thin as 15 μm. Intermolecular interactions occurred between PPy and the ionomer by proton transfer. Incorporation of PPy also increased the tensile strength of the ionomer film, significantly increased its modulus above Tg, and inhibited melt flow. © 1997 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 16 (1978), S. 1101-1113 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The viscoelastic behavior of phosphonate derivatives of phosphonylated low-density polyethylene (LDPE) was studied by dynamic mechanical techniques. The polymers investigated contained from 0.2 to 9.1 phosphonate groups per 100 carbon atoms and included the dimethyl phosphonate derivative and two derivatives for which the phosphonate ester group was an oligomer of poly(ethylene oxide) (PEO). The temperature dependences of the storage and loss moduli of the dimethyl phosphonate derivatives were qualitatively similar to those of LDPE. At low phosphonate concentrations, the α, β, and γ dispersion regions characteristic of PE were observed, while at concentrations greater than 0.5 pendent groups per 100 carbons atoms, only the β and α relaxations could be discerned. At low degrees of substitution, the temperature of the β relaxation Tβ decreased from that of PE, but above a degree of substitution of 0.1, Tβ increased. This behavior was attributed to the competing influences of steric effects which tend to decrease Tβ and dipolar interactions between the phosphonate groups which increase Tβ. For the phosphonate containing PEO, a new dispersion region designated as the β′ relaxation was observed as a low-temperature shoulder of the β relaxation. The temperature of the β′ loss was consistent with Tg(U) of the PEO oligomers as determined by differential scanning calorimetry, and it is suggested that the β′-loss process results from the relaxation of PEO domains which constitute a discrete phase within the PE matrix.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 15 (1977), S. 1409-1425 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Low-density polyethylene was modified by the inclusion of phosphonate ester pendent groups by using an oxidative chlorophosphonylation reaction followed by esterification of the polyethylene poly(phosphonyl chloride) with an alcohol. Two different types of phosphonate esters were prepared: dimethyl phosphonate from the reaction with methanol and a phosphonate graft copolymer from the reaction with hydroxy-terminated poly(ethylene oxide) (PEO). For the latter, oligomers with molecular weights of 350 and 750 were used. For each type of phosphonate, a series of polymers were prepared with pendent group concentrations ranging from 0 to 9.1 substituents per 100 carbon atoms. The modified polymers were characterized by infrared spectroscopy, differential scanning calorimetry, and by measurement of the tensile modulus. Infrared spectroscopy proved to be useful for determining if the polymer modification reaction resulted in entirely phosphonate ester pendent group substitutions or if unesterified phosphonic acid groups were also present. The polymers prepared in this investigation exhibited no infrared absorbances arising from phosphonic acid groups. The presence of phosphonate ester groups resulted in a decrease of crystallinity with increasing phosphonate concentration and with the exception of the polymers containing 9.1 PEO-phosphonate grafts per 100 carbon atoms, the effect of phosphonylation on the melting temperature of the polymers was consistent with Flory's theory for the melting point depression of random copolymers. The tensile modulus measured from a constant uniaxial elongation experiment decreased with increasing phosphonylation. The behavior of all three phosphonate series was identical and could be attributed to the effect of decreasing polymer crystallinity.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 18 (1980), S. 3427-3439 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The copolymerization of butadiene with sodium styrene sulfonate was studied and the copolymer products characterized. In general these copolymers contain 0.5-4 mole% of sulfonated monomer. The effects of the following reaction variables are described: emulsifier type and concentration, monomers feed ratio, chain transfer agent concentration, and reaction conversion. The products were heterogeneous with regard to composition, molecular weight, and solubility behavior. Copolymers prepared under certain conditions exhibited strong intermolecular interactions derived from associations of the ionic species as observed in other ionomers.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 23 (1985), S. 535-548 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The emulsion copolymerization of styrene and sodium styrene sulfonate has been shown to be a feasible preparative route to ionomeric sulfonated polystyrene. The properties of these copolymers are reported elsewhere. The copolymerization rate was found to be dramatically enhanced when compared to that for the emulsion copolymerization of styrene under identical conditions. This copolymerization was studied in detail and two mechanisms were proposed to account for these rate differences. An increase in the number of polymerizing particles in the copolymerization with consequent rate enhancement was substantiated by electron microscopy. However, the data indicate that the rate differences cannot be fully accounted for by this effect. In addition, a gel effect is proposed as a second contributor to the enhanced rate. This gel effect is believed to result from the intermolecular association of the incorporated metal sulfonate units in the growing polymer particles. When a third monomer that plasticizes the ionic interactions is used the polymerization rate decreases. This supports the gel effect hypothesis.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 23 (1985), S. 525-533 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Sulfonated polystyrene (S-PS), which is of considerable scientific and technological interest, has been traditionally prepared by the sulfonation of preformed polystyrene. This report describes the preparation and properties of S-PS prepared by emulsion copolymerization of styrene and sodium styrene sulfonate. S-PS prepared by copolymerization gave solubility, solution behavior and thermal characteristics that are consistent with an ionomeric structure. The solubility characteristics indicated some chain-to-chain sulfonate heterogeneity. Thermal analysis studies indicated that the glass transition does not increase with increasing sulfonate content. This is contrary to what has been observed for S-PS prepared by sulfonation and suggests that the S-PS prepared by copolymerization is fundamentally different in structure than S-PS prepared by sulfonation of polystyrene.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 20 (1982), S. 65-72 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal properties of an ionomer glass, lightly sulfonated polystyrene, was studied as a function of aging at room temperature after being cooled from the melt. An anomalous endothermic event below Tg was observed by differential scanning calorimetry; the intensity of this excess enthalpy was a function of time and sulfonate concentration. It is suggested that the origin of this relaxation may be due in part to morphological changes that occur as a consequence of electrostatic interactions of the sulfonate groups.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 23 (1985), S. 1869-1881 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Far-infrared spectra of a series of un-neutralized and neutralized lightly sulfonated polystyrenes with varying sulfonation levels have been investigated to seek spectroscopic evidence for microphase separation known to control the physical properties of these polymers. Broad, strong absorbance bands, not found in the spectrum of unmodified polystyrene, are observed in the spectra of the sulfonated analogs. The effects on the far-infrared spectra both of sulfonation level and of the mass and charge of the neutralizing cation are discussed in terms of cation motion and the formation of ion-rich domains.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 20 (1982), S. 1503-1509 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Small- and wide-angle x-ray scattering results for a series of un-neutralized and neutralized sulfonated polystyrenes are presented for the range of sulfonation from 0 to 7.26 mol %. From the small-angle scattering it is shown that above the 3 mol % level for both the zinc and sodium salts, a Bragg spacing (37 Å) and diameter (6.9-8.4 Å) of the scattering unit can be calculated. When the concentration of salt is increased, there is no appreciable change in the latter two measurements. The wide-angle data indicate that the cations do not influence to any large extent the basic intramolecular and intermolecular structure of polystyrene. All the data are consistent with the onset of clustering above a critical ion concentration.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...