ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2835-2848 
    ISSN: 0887-6266
    Keywords: dielectric spectroscopy ; interfacial polarization ; Debye length ; particle size ; polymer blends ; laminates ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In this article we will focus on the dielectric properties of laminates and blends of a partially conducting (the liquid crystalline copolyesteramide Vectra B950) and an insulating (polypropylene or mica) phase. Dielectric spectroscopy was used as a tool to obtain information about the influence of the dimensions of the conducting phase in these laminates and blends. With decreasing thickness of the conducting layer in the laminates, the measured permittivities deviate more and more from the values predicted using conventional dielectric mixture models. From this discrepancy it is possible to calculate the thickness of the charge layer (=Debye length) in the conducting phase and the thickness of this phase itself, using a model derived by Trukhan. This model incorporates not only conduction, but also diffusion of the charges. Similar experiments were performed on a system of Vectra B950 particles in a polypropylene matrix. After the derivation of a new model, which combines the Trukhan model for space charges with the Böttcher equation for dielectric mixtures, we could make a distinction between samples containing large and small particles. For samples containing small particles, it is even possible to determine the variation in particle sizes. However, the use of a Debye length of 1.1 µm obtained from the laminates resulted in particle sizes that were two times higher than the actual values. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2835-2848, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 815-825 
    ISSN: 0887-6266
    Keywords: dielectric spectroscopy ; interfacial tension ; liquid crystalline polymer ; blend ; interfacial polarization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dielectric spectroscopy is an unexplored technique in the elucidation of the morphology of polymer blends. Especially the appearance of interfacial polarization can reveal important information about the microstructure of a polymer blend. A model system of liquid crystalline polymer fibers lined up in a thermoplastic matrix was investigated. After heating above the melting temperature of both phases, the fibers developed distortions which grew with time. Dielectric spectroscopy was used to follow the change in shape of the distorted fibers. The use of only two frequencies made it possible to increase the number of relevant data points in the initial stages of the fiber breakup process. From these measurements it was possible to calculate the growth rate and hence the interfacial tension between the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 815-825, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...