ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 20 (1982), S. 877-892 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Properties of linear polyesters based on azoxybenzene and 2,2′-methylazoxybenzene moieties with linear, flexible spacers based on mixtures of dodecanedioic acid (DDA) and methyladipic acid (MAA), chiral or racemic, of various compositions (system MAA/DDA-8 and MAA/DDA-9, respectively) have been described. Substitution of methyl groups in the 2,2′ or 3,3′ positions of the mesogenic core leads to soluble and relatively low-melting-point polyesters. The viscosity law for (MAA/DDA-9) polyesters in 1,1,2,2 tetrachloroethane gives an exponent 0.76, indicating well-sol-vated, coiled chain conformations in dilute solution. Calorimetric data show an increase in isotropization entropy ΔSNI with increasing average length of the spacer. This suggests a nonrandom conformation of the spacer in the nematic melt with a degree of order superior to that of low-molecular-weight analogs. X-ray data obtained with an oriented nematic glass quenched from the nematic melt of DDA-9 subjected to a magnetic field of 10-12 T also support the extended-chain model in the nematic phase of DDA-9. Oriented fibers can be produced by subjecting nematic melts of polyesters 8 and 9 either to magnetic fields of high intensity or to shear fields. The x-ray data obtained from these fibers also support the extended-chain model. Cholesteric systems do not orient in the magnetic field of 10-12 T. The study of mesophases of systems 8 and 9 indicates a dramatic influence of the position of the ester group on the stability of the mesophase in the azoxybenzene polyesters. The results are interpreted in terms of geometric factors influencing the colinearity of the mesogenic core and of the extended spacer.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 16 (1978), S. 2183-2190 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Copolymers of methacrylic acid (MAA) and a nonionic hydrophilic monomer N-vinylpyrrolidone (NVP) were synthesized by polymerization in aqueous solution in the absence of metal ions. The NVP content of the copolymers ranged from 2 to 36 mole % with sequences of MAA interrupted at random by a single unit of NVP at all compositions. The pH-induced conformational transition of these copolymers was followed by potentiometric titration and viscosity studies and the results were compared with those of pure poly(methacrylic acid) (PMAA). The negative free energy of transition from the un-ionized compact from to expanded structure showed a gradual decrease with increasing NVP content, and the collapsed conformation observable for PMAA at low degrees of ionization (0 〈 α 〈 0.3) disappeared at NVP contents greater than 15 mole%. These findings are supported by viscosity data. The results suggest that long-range methyl-methyl hydrophobic contacts still possible in higher NVP content copolymers are not sufficient to bring about the collapse of the molecule and a minimum average sequence length of about 20 MAA units is required to compact the molecule. Hydrophilic “shielding” of MAA chains by NVP segments could also partly destabilize the collapsed structure.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...