ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-6266
    Keywords: fullerenes ; PVK ; UV-laser ablation ; aggregation and coalescence ; photoinduced electron transfer ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The phenomena of aggregation and coalescence of fullerenes in the UV-laser ablation time-of-flight mass spectrometric investigation of C60-modified poly(N-vinylcarbazole) both in the positive and in the negative ion channels have been observed. The results indicate that in C60 chemically modified PVK (C60-PVK) copolymer the nascent fullerene fragments ruptured from main chain can easily coalesce into large fullerenes through collisions, whereas in the C60-doped PVK the aggregation and coalescence of C60 were relative weak due to nonbounding action and incomplete charge transfer behavior between C60 and PVK. Furthermore, the photoinduced electron transfer behavior between C60 and carbazole units in the C60 chemically modified poly(N-vinylcarbazole) in benzonitrile by laser flash photolysis at 355 nm has also been investigated. Efficiency of the anion radical of C60 in copolymer at 1080 nm is higher than that of the C60-doped poly(N-vinylcarbazole) polymers. The formation of a C60 radical anion may be ascribed to photoinduced electron transfer between C60 pendanted on the main chain backbone and the inter-, and intrachain carbazole units in the copolymer. © 1997 John Wiley & Sons, Inc. 35: 1185-1190, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2653-2663 
    ISSN: 0887-6266
    Keywords: [60]fullerene ; styrene ; anionic copolymerization ; structural characterization ; sodium naphthalene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The novel C60-styrene copolymers with different C60 contents were prepared in sodium naphthalene-initiated anionic polymerization reactions. Like the pure polystyrene, these copolymers exhibited the high solvency in many common organic solvents, even for the copolymer with high C60 content. In the polymerization process of C60 with styrene an important side reaction, i.e., reaction of C60 with sodium naphthalene, would occur simultaneously, whereas crosslinking reaction may be negligible. 13C-NMR results provided an evidence that C60 was incorporated covalently into the polystyrene backbone. In contrast to pure polystyrene, the TGA spectrum of copolymer containing ∼ 13% of C60 shows two plateaus. The polystyrene chain segment in copolymer decomposed first at 300-400°C. Then the fullerene units reptured from the corresponding polystyrene fragments attached directly to the C60 cores at 500-638°C. XRD evidence indicates that the degree of order of polymers increases with the fullerene content increased in terms of crystallography. Incorporation of C60 into polystyrene results in the formation of new crystal gratings or crystallization phases. In addition, it was also found that [60]fullerene and its polyanion salts [C60n-(M+)n, M = Li, Na] cannot be used to initiate the anionic polymerization of some monomers such as acrylonitrile and styrene, etc.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2653-2663, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...