ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-07-27
    Description: A method is presented that dramatically improves the resolution of protein nuclear magnetic resonance (NMR) spectra by increasing their dimensionality to four. The power of this technique is demonstrated by the application of four-dimensional carbon-13--nitrogen-15 (13C-15N)--edited nuclear Overhauser effect (NOE) spectroscopy to interleukin-1 beta, a protein of 153 residues. The NOEs between NH and aliphatic protons are first spread out into a third dimension by the 15N chemical shift of the amide 15N atom and subsequently into a fourth dimension by the 13C chemical shift of the directly bonded 13C atoms. By this means ambiguities in the assignment of NOEs between NH and aliphatic protons that are still present in the three-dimensional 15N-edited NOE spectrum due to extensive chemical shift overlap and degeneracy of aliphatic resonances are completely removed. Consequently, many more approximate interproton distance restraints can be obtained from the NOE data than was heretofore possible, thereby expanding the horizons of three-dimensional structure determination by NMR to larger proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, L E -- Clore, G M -- Bax, A -- Gronenborn, A M -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):411-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377896" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; *Interleukin-1 ; *Magnetic Resonance Spectroscopy ; Physicochemical Phenomena ; Solutions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-15
    Description: There is growing evidence that structural flexibility plays a central role in the function of protein molecules. Many of the experimental data come from nuclear magnetic resonance (NMR) spectroscopy, a technique that allows internal motions to be probed with exquisite time and spatial resolution. Recent methodological advancements in NMR have extended our ability to characterize protein dynamics and promise to shed new light on the mechanisms by which these molecules function. Here, we present a brief overview of some of the new methods, together with applications that illustrate the level of detail at which protein motions can now be observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mittermaier, Anthony -- Kay, Lewis E -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):224-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada. anthony.mittermaier@mcgill.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614210" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; Chemistry, Physical ; Kinetics ; Motion ; *Nuclear Magnetic Resonance, Biomolecular/methods ; Physicochemical Phenomena ; *Protein Conformation ; *Protein Folding ; Proteins/*chemistry ; Proto-Oncogene Proteins c-fyn/chemistry ; Temperature ; Thermodynamics ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...