ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phylogeny  (1)
  • Xanthomonas campestris  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1432-1432
    Keywords: Metabolic evolution ; Aromatic biosynthesis ; Regulatory enzymes ; Xanthomonas campestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The recent placement of major Gramnegative prokaryotes (Superfamily B) on a phylogenetic tree (including, e.g., lineages leading toEscherichia coli, Pseudomonas aeruginosa, andAcinetobacter calcoaceticus) has allowed initial insights into the evolution of the biochemical pathway for aromatic amino acid biosynthesis and its regulation to be obtained. Within this prokaryote grouping,Xanthomonas campestris ATCC 12612 (a representative of the Group V pseudomonads) has played a key role in facilitating deductions about the major evolutionary events that shaped the character of aromatic biosynthesis within this grouping.X. campestris is likeP. aeruginosa (and unlikeE. coli) in its possession of dual flow routes to bothl-phenylalanine andl-tyrosine from prephenate. Like all other members of Superfamily B,X. campestris possesses a bifunctional P-protein bearing the activities of both chorismate mutase and prephenate dehydratase. We have found an unregulated arogenate dehydratase similar to that ofP. aeruginosa inX. campestris. We separated the two tyrosine-branch dehydrogenase activities (prephenate dehydrogenase and arogenate dehydrogenase); this marks the first time this has been accomplished in an organism in which these two activities coexist. Superfamily B organisms possess 3-deoxy-d-arabino-heptulosonate 7-P (DAHP) synthase as three isozymes (e.g., inE. coli), as two isozymes (e.g., inP. aeruginosa), or as one enzyme (inX. campestris). The two-isozyme system has been deduced to correspond to the ancestral state of Superfamily B. Thus,E. coli has gained an isozyme, whereasX. campestris has lost one. We conclude that the single, chorismate-sensitive DAHP synthase enzyme ofX. campestris is evolutionarily related to the tryptophan-sensitive DAHP synthase present throughout the rest of Superfamily B. InX. campestris, arogenate dehydrogenase, prephenate dehydrogenase, the P-protein, chorismate mutase-F, anthranilate synthase, and DAHP synthase are all allosteric proteins; we compared their regulatory properties with those of enzymes of other Superfamily B members with respect to the evolution of regulatory properties. The network of sequentially operating circuits of allosteric control that exists for feedback regulation of overall carbon flow through the aromatic pathway inX. campestris is thus far unique in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 136 (1983), S. 163-168 
    ISSN: 1432-072X
    Keywords: Phylogeny ; Biochemical evolution ; Aromatic pathway ; L-Phenylalanine ; Pseudomonads
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Group I pseudomonads exhibit diversity for L-phenylalanine biosynthesis that is a basis for separation of two subgroups. Subgroup Ib (fluorescent species such as Pseudomonas aeruginosa, P. fluorescens, or P. putida) possesses an unregulated overflow pathway to Lphenylalanine, together with a second, regulated pathway. Subgroup Ia (non-fluorescent species such as P. stutzeri, P. mendocia, or P. alcaligenes) possess only the regulated pathway to L-phenylalanine. Thus, subgroup Ia species lack an unregulated isozyme of chorismate mutase and arogenate dehydratase, enzymes which are thought to divert chorismate to L-phenylalanine under conditions of high carbon input into aromatic biosynthesis. A priori the overflow pathway could have been either lost in subgroup Ia or gained in subgroup Ib. Since Group V pseudomonads (mainly Xanthomonas) are known to branch off from the Group I lineage at a deeper phylogenetic level than the point of divergence for subgroups Ia and Ib, the presence of the overflow pathway in Group V pseudomonads reveals that the overflow pathway must have been lost in the evolution of subgroup Ia. All Group I species possess a bifunctional protein (P-protein) which catalyzes both chorismate mutase and prephenate dehydratase reactions. In subgroup Ia species this highly conserved protein must be the sole source of prephenate to be used for tyrosine biosynthesis. Thus, the channeling action of the P-protein whereby chorismate is committed towards L-phenylalanine formation can be negated by selective feedback inhibition exerted by L-phenylalanine upon the prephenate dehydratase component of the P-protein. Diversion of prephenate molecules under the latter conditions towards L-tyrosine comprises a channel-shuttle mechanism. Such an essential role of the P-protein chorismate mutase for both tyrosine and phenylalanine formation is supported by the observation that stringent phenylalanine auxotrophs lacked the prephenate dehydratase activity but not chorismate mutase activity of the P-protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...