ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-09-18
    Description: Targeted therapies that inhibit receptor tyrosine kinases (RTKs) and the downstream phosphatidylinositol 3-kinase (PI3K) signaling pathway have shown promising anticancer activity, but their efficacy in the brain tumor glioblastoma multiforme (GBM) and other solid tumors has been modest. We hypothesized that multiple RTKs are coactivated in these tumors and that redundant inputs drive and maintain downstream signaling, thereby limiting the efficacy of therapies targeting single RTKs. Tumor cell lines, xenotransplants, and primary tumors indeed show multiple concomitantly activated RTKs. Combinations of RTK inhibitors and/or RNA interference, but not single agents, decreased signaling, cell survival, and anchorage-independent growth even in glioma cells deficient in PTEN, a frequently inactivated inhibitor of PI3K. Thus, effective GBM therapy may require combined regimens targeting multiple RTKs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stommel, Jayne M -- Kimmelman, Alec C -- Ying, Haoqiang -- Nabioullin, Roustem -- Ponugoti, Aditya H -- Wiedemeyer, Ruprecht -- Stegh, Alexander H -- Bradner, James E -- Ligon, Keith L -- Brennan, Cameron -- Chin, Lynda -- DePinho, Ronald A -- 5P01CA95616/CA/NCI NIH HHS/ -- R01CA99041/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):287-90. Epub 2007 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872411" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; Antineoplastic Combined Chemotherapy Protocols/pharmacology/therapeutic use ; Brain Neoplasms/drug therapy/*enzymology ; Cell Line, Tumor ; Cell Survival ; Enzyme Activation ; Erlotinib Hydrochloride ; Glioblastoma/drug therapy/*enzymology ; Humans ; Indoles/pharmacology ; PTEN Phosphohydrolase/genetics/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Piperazines/pharmacology ; Protein Kinase Inhibitors/*pharmacology ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-met ; Quinazolines/pharmacology ; Receptor Protein-Tyrosine Kinases/antagonists & inhibitors/*metabolism ; Receptor, Epidermal Growth Factor/antagonists & inhibitors/metabolism ; Receptors, Growth Factor/metabolism ; Signal Transduction ; Sulfonamides/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-11-26
    Description: The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)-activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element-binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1alpha expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, Reuben J -- Lamia, Katja A -- Vasquez, Debbie -- Koo, Seung-Hoi -- Bardeesy, Nabeel -- Depinho, Ronald A -- Montminy, Marc -- Cantley, Lewis C -- CA84313/CA/NCI NIH HHS/ -- GM056203/GM/NIGMS NIH HHS/ -- GM37828/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 GM056203-09/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1642-6. Epub 2005 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. shaw@salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16308421" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Animals ; Blood Glucose/analysis ; Diabetes Mellitus, Type 2/drug therapy/metabolism ; Enzyme Activation ; Female ; Gene Expression Regulation ; Gluconeogenesis/genetics ; Glucose/*metabolism ; HeLa Cells ; Homeostasis ; Humans ; Hyperglycemia/drug therapy/metabolism ; Hypoglycemic Agents/*pharmacology/therapeutic use ; Lipogenesis/genetics ; Liver/enzymology/*metabolism ; Male ; Metformin/*pharmacology/therapeutic use ; Mice ; Mice, Obese ; Multienzyme Complexes/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction ; Trans-Activators/genetics/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-04
    Description: The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inuzuka, Hiroyuki -- Shaik, Shavali -- Onoyama, Ichiro -- Gao, Daming -- Tseng, Alan -- Maser, Richard S -- Zhai, Bo -- Wan, Lixin -- Gutierrez, Alejandro -- Lau, Alan W -- Xiao, Yonghong -- Christie, Amanda L -- Aster, Jon -- Settleman, Jeffrey -- Gygi, Steven P -- Kung, Andrew L -- Look, Thomas -- Nakayama, Keiichi I -- DePinho, Ronald A -- Wei, Wenyi -- GM089763/GM/NIGMS NIH HHS/ -- R01 GM089763/GM/NIGMS NIH HHS/ -- R01 GM089763-01/GM/NIGMS NIH HHS/ -- R01 GM089763-02/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Mar 3;471(7336):104-9. doi: 10.1038/nature09732.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368833" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis/drug effects ; Benzenesulfonates/pharmacology ; Biphenyl Compounds/pharmacology ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line, Tumor ; F-Box Proteins/genetics/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Myeloid Cell Leukemia Sequence 1 Protein ; Niacinamide/analogs & derivatives ; Nitrophenols/pharmacology ; Phenylurea Compounds ; Phosphorylation ; Piperazines/pharmacology ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology ; Protein Binding/drug effects ; Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors/*chemistry/*metabolism ; Pyridines/pharmacology ; SKP Cullin F-Box Protein Ligases/*chemistry/*metabolism ; Sulfonamides/pharmacology ; Tumor Suppressor Proteins/deficiency/genetics/metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; *Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...