ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-11
    Description: The subunit stoichiometry of several ligand-gated ion channel receptors is still unknown. A counting method was developed to determine the number of subunits in one family of brain glutamate receptors. Successful application of this method in an HEK cell line provides evidence that ionotropic glutamate receptors share a tetrameric structure with the voltage-gated potassium channels. The average conductance of these channels depends on how many subunits are occupied by an agonist.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenmund, C -- Stern-Bach, Y -- Stevens, C F -- NS 12961/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1596-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Workgroup Cellular Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616121" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Electric Conductivity ; Excitatory Amino Acid Agonists/metabolism ; Excitatory Amino Acid Antagonists/metabolism ; Humans ; Ligands ; Macromolecular Substances ; Models, Biological ; Patch-Clamp Techniques ; Quinoxalines/metabolism ; Quisqualic Acid/metabolism ; Receptors, AMPA/agonists/antagonists & inhibitors/*chemistry/*metabolism ; Receptors, Glutamate/chemistry/metabolism ; Receptors, Kainic Acid/agonists/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-27
    Description: CKAMP44, identified here by a proteomic approach, is a brain-specific type I transmembrane protein that associates with AMPA receptors in synaptic spines. CKAMP44 expressed in Xenopus oocytes reduced GluA1- and A2-mediated steady-state currents, but did not affect kainate- or N-methyl-D-aspartate (NMDA) receptor-mediated currents. Mouse hippocampal CA1 pyramidal neurons expressed CKAMP44 at low abundance, and overexpression of CKAMP44 led to stronger and faster AMPA receptor desensitization, slower recovery from desensitization, and a reduction in the paired-pulse ratio of AMPA currents. By contrast, dentate gyrus granule cells exhibited strong CKAMP44 expression, and CKAMP44 knockout increased the paired-pulse ratio of AMPA currents in lateral and medial perforant path-granule cell synapses. CKAMP44 thus modulates short-term plasticity at specific excitatory synapses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Engelhardt, Jakob -- Mack, Volker -- Sprengel, Rolf -- Kavenstock, Netta -- Li, Ka Wan -- Stern-Bach, Yael -- Smit, August B -- Seeburg, Peter H -- Monyer, Hannah -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1518-22. doi: 10.1126/science.1184178. Epub 2010 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Neurobiology, University of Heidelberg, 6910 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185686" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/metabolism ; Calcium Channels/metabolism ; Dendritic Spines/metabolism ; Dentate Gyrus/cytology/*metabolism ; Excitatory Postsynaptic Potentials ; Glutamic Acid/metabolism ; Guanylate Kinase ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins/metabolism ; Mice ; Mice, Knockout ; Miniature Postsynaptic Potentials ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neural Inhibition ; *Neuronal Plasticity ; Neurons/*metabolism ; Oocytes/metabolism ; Patch-Clamp Techniques ; Perforant Pathway ; Protein Interaction Domains and Motifs ; Protein Isoforms/genetics/metabolism ; Proteomics ; Pyramidal Cells/metabolism ; Receptors, AMPA/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Synapses/*physiology ; *Synaptic Transmission ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-12-09
    Description: AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor channels mediate the fast component of excitatory postsynaptic currents in the central nervous system. Site-selective nuclear RNA editing controls the calcium permeability of these channels, and RNA editing at a second site is shown here to affect the kinetic aspects of these channels in rat brain. In three of the four AMPA receptor subunits (GluR-B, -C, and -D), intronic elements determine a codon switch (AGA, arginine, to GGA, glycine) in the primary transcripts in a position termed the R/G site, which immediately precedes the alternatively spliced modules "flip" and "flop." The extent of editing at this site progresses with brain development in a manner specific for subunit and splice form, and edited channels possess faster recovery rates from desensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lomeli, H -- Mosbacher, J -- Melcher, T -- Hoger, T -- Geiger, J R -- Kuner, T -- Monyer, H -- Higuchi, M -- Bach, A -- Seeburg, P H -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1709-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992055" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Brain/embryology/*metabolism ; Cell Nucleus/metabolism ; Exons ; Glutamic Acid/pharmacology ; Glycine/genetics ; Introns ; Kinetics ; Membrane Potentials ; Molecular Sequence Data ; Oocytes ; PC12 Cells ; Patch-Clamp Techniques ; *RNA Editing ; Rats ; Rats, Wistar ; Receptors, AMPA/*genetics/*metabolism ; Recombinant Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...