ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 289-298 
    ISSN: 0887-6266
    Keywords: gas permeability ; PMSP membrane ; aging effects ; storage environment ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A significant reduction in the gas permeability of the poly(1-trimethylsilyl-1-propyne) (PMSP) membrane was investigated in terms of the membrane thickness and the storage environment. The effects of physical aging were observed with thinner membranes and under vacuum conditions compared with storage in air. The decrease in the permeability coefficient was dependent on the decrease in the hole saturation constant of Langmuir adsorption (C'H), which is related to the volume of the microvoids. Physical aging in the PMSP membrane affected not only the glassy domain but also the rubbery one. To stabilize the permeability of the PMSP membrane, a poly(1-trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) [poly(TMSP-co-PP)] membrane was prepared. Poly(TMSP-co-PP) has the same unit of poly(1-phenyl-1-propyne), which membrane has stable permeability. The poly(TMSP-co-PP) with less than 20 mol % PP content was estimated to be a random copolymer based on theoretical gas permeation analysis. In the poly(TMSP-co-PP) membrane, the relation between the PP content and C'H was similar to the relation between the PP content and the gas permeability. The stability of the permeability was dependent on the PP content. The poly(TMSP-co-PP) membrane containing 10 mol % PP had both high permeability and good stability under some of the aging conditions performed in this work. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...