ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0867
    Keywords: Soil P test ; water extraction ; seasonal variation ; sampling depth ; fertilizer P addition ; microbial biomass P
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of seasonal variation, sampling depth, and fertilizer P addition on water-extractable P values were investigated in two field experiments, involving soils of contrasting P retention capacity (Ramiha and Tokomaru) under permanent pasture over 12 months. The effects of the same parameters on Olsen-extractable P were also evaluated. The amounts of water-extractable P in soil were always lower than those of Olsen-extractable P. Over the 12-month period, the average value of water-extractable P in the unfertilized Ramiha soil (0–7.5 cm depth) was 1.8µg g−1 soil compared to an Olsen-extractable P value of 12.6µg g−1. The variability associated with water-extractable P at each sampling time was comparable with that for Olsen-extractable P. However, the relative seasonal variation over 12 months was larger for water-extractable P than for Olsen-extractable P. The results obtained with both extractants showed a seasonal fluctuation which was closely related to the pattern of pasture P uptake. The amounts of water- and Olsen-extractable P were higher in samples taken from the 0–4.0 cm than the 0–7.5 cm sampling depth. Fertilizer P addition resulted in larger increases in water-extractable P in the 0–4.0 cm sampling depth than in the 0–7.5 cm depth. The relative increase in water-extractable P following fertilizer P addition was larger than that of Olsen-extractable P. Seasonal changes in the soil microbial biomass P were not related to changes in either water-extractable P or plant uptake of P. Microbial biomass P may be a less sensitive index of soil P availability than is commonly thought.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0867
    Keywords: Soil P test ; water extraction ; plant-available P ; glasshouse experiment ; P-buffering capacity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A water extraction procedure was evaluated as a soil-testing procedure for phosphorus (P). In a glasshouse experiment using perennial ryegrass, the water extraction procedure was used to predict plant-available P in 20 New Zealand soils varying widely in P status and P retention capacity. Water-extractable P in the 20 soils was highly correlated with plant uptake of P (r = 0.90**). Although plant uptake of P and Olsen-extractable P were equally well correlated (r = 0.90**), relationships between plant uptake of P and Bray1 — and Truog-extractable P, and isotopically exchangeable P were less close. The prediction of plant-available P using water extraction was not improved by inclusion of an estimate of P-buffering capacity (obtained from P retention capacity or the slope of the P desorption isotherm), in contrast to the finding for Olsen-extractable P. Because the interpretation of the results obtained appears to be independent of P-buffering capacity and soil type, the water extraction procedure may have advantages over the other soil-testing procedures for P for soils containing reasonable amounts of water-extractable P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0867
    Keywords: Dry matter yield ; exchangeable Ca ; phosphate rocks ; P sorption capacity ; relative agronomic effectiveness ; substitution ratio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Six phosphate rocks (PRs) of varying reactivities were compared with monocalcium phosphate (MCP) in a glasshouse experiment growing perennial ryegrass (Lolium perenne cv. Nui) as the test plant on four soils of contrasting P sorption capacity and exchangeable Ca. The cumulative dry matter yield over 10 harvests showed a significant response to P application in all soils. Based on relative yield and P uptake, MCP was the most effective P fertilizer followed by the reactive phosphate rocks, which were superior to the unreactive rocks in all soils. The relative agronomic effectiveness (RAE) and substitution ratio (SR) of individual PR fertilizers, calculated with respect to MCP using the methods of ‘vertical’ and ‘horizontal’ comparison, respectively, were similar over a range of fertilizer rate. There was a decline or slight increase in the performance of PRs with time in the low P sorption soils but a consistent increase in the high P sorption soils. Some initial influence of exchangeable Ca content of the soils on the relative performance of PRs was also observed. Generally the PRs performed better in high P sorption soils than low P sorption soils and in low exchangeable Ca soils than high exchangeable Ca soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0867
    Keywords: Mixed cation-anion exchange resin P ; Olsen P ; phosphate rocks ; P sorption capacity ; P sources ; Resin P ; ryegrass ; soil testing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A glasshouse experiment was conducted on four soils contrasting in P sorption capacity and exchangeable Ca content with perennial ryegrass using six phosphate rock (PR) sources and a soluble P source applied at four rates (including a control). After three harvests (11 weeks) replicate pots of each treatment were destructively sampled and Olsen P and mixed cation-anion exchange resin (Resin P) extractions carried out. The remaining replicated treatments were harvested another seven times (during 41 weeks). Yields (for the last seven harvests) were expressed as percentages of the maximum yield attainable with MCP. In general, the Resin P test extracted more than twice as much P as the Olsen test. There was a significant increase in Resin P with an increase in the amount of each P source in all four soils, but Olsen P values were not significantly different for soils treated with different rates of each phosphate rock. The abilities of the Olsen and mixed resin soil P tests to predict the cumulative dry matter yield from 7 harvests and the relative yield of ryegrass were compared. Correlations between measured yield (for the last 7 harvests) and soil test for each soil, and relative yield and soil test for all four soils were assessed by regression analysis using Mitscherlich-type models. When dry matter yields were regressed separately against soil test values for each soil, the Resin P consistently accounted for 18–28% more of the variation in yield than did Olsen P. For Resin P a single function was not significantly different from the separate functions fitted to MCP and PR treatments. However, for Olsen P the separate functions for the MCP and PR treatments varied significantly from the single fitted function. The Resin P test (R2 = 0.84) was a better predictor of relative yields over this range of soils than the Olsen test (R2 = 0.75). Two regression models based on the regression of relative yield for MCP treatments against either Olsen or Resin were developed. These models were then fitted to the relative yield data on soils fertilized with PRs only. The Olsen P model was found to be a poorer predictor (R2 = 0.41) than the Resin P model (R2 = 0.73) because it underestimated the observed yield of the PR treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...