ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxygen protection  (1)
  • Oxygen-protection  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 139 (1984), S. 162-166 
    ISSN: 1432-072X
    Keywords: Frankia ; Nitrogenase ; Oxygen protection ; Alnus rubra isolate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract O2 protection of nitrogenase in a cultured Frankia isolate from Alnus rubra (HFPArI3) was studied in vivo. Evidence for a passive gas diffusion barrier in the vesicles was obtained by kinetic analysis of in vivo O2 uptake and acetylene reduction rates in response to substrate concentration. O2 of NH 4 + -grown cells showed an apparent K m O2 of approximately 1μM O2. In N2-fixing cultures a second K m O2 of about 215 μM O2 was observed. Thus, respiration remained unsaturated by O2 at air-saturation levels. In vivo, the apparent K m for acetylene was more than 10-fold greater than reported in vitro values. These data were inter oreted as evidence for a gas diffusion barrier in the vesicles but not vegetative filaments of Frankia sp. HFPArI3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 151 (1989), S. 469-474 
    ISSN: 1432-072X
    Keywords: Anabaena ; Heterocysts ; Nitrogenase ; Oxygen-protection ; Mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mutants of Anabaena sp. PCC 7120 with O2-sensitive acetylene-reducing activity were studied to identify envelope components that contribute to the barrier limiting diffusion of oxygen into the heterocyst. Mutant strain EF114, deficient in a heterocyst-specific glycolipid, reduced acetylene only under strictly anaerobic conditions. Analysis of in vivo O2 uptake as a function of dissolved pO2 showed that EF114 has lost the low affinity, diffusion-limited respiratory component associated with heterocysts in wild-type filaments. The low affinity respiratory activity was also lost in EF116, a mutant in which the cohesiveness of the outer polysaccharide layer was reduced. Restoration of aerobic nitrogen fixation in a spontaneous revertant of EF116 and in a strain complemented with cosmid 41E11 was associated with restoration of the low affinity component of respiratory activity. The results provide evidence that the barrier to diffusion of gas into heterocysts depends upon both the glycolipid layer and the polysaccharide layer of the heterocyst envelope.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...