ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Organic Chemistry  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 3 (1990), S. 239-247 
    ISSN: 0894-3230
    Keywords: Organic Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Reaction of bromide ion with α-picryl-p-bromoacetophenone (1) is speeded by aqueous cationic micelles of cetyltrimethylammonium bromide (CTABr; C16H33NMe3Br) and dodecyltrimethylammonium bromide (DoTABr; C12H25NMe3Br) and rate constants reach limiting values when 1 is fully bound to micelles of CTABr. Limiting values are not reached in DoTABr, but the data can be fitted to a simple model for the distribution of reactants between water and micelles. Estimated second-order rate constants at the micellar surface are similar to values in water, but this model cannot explain the observed rate enhancements on addition of NaBr to CTABr. Inert anions such as nitrate, mesylate, n-butanesulfonate, phenylmethanesulfonate and camphor-10-sulfonate inhibit reaction in CTABr by competing with Br- at the micellar surface. Other n-alkanesulfonate ions (RSO3-, R = n-C5H11, n-C6H13, n-C7H15, n-C8H17) and arenesulfonate ions (benzene-, toluene-, naphthalene-1- and naphthalene-2-sulfonate) behave anomalously. These ions expel Br- from the micelle, as shown electrochemically, but there are maxima in plots of rate constant against mole fraction of Br-. These rate extrema are apparently due to perturbation of the micellar surface structure that overcomes the inhibition due to competition with Br-. These results show that the simple pseudo-phase, ion-exchange model can be applied only in dilute electrolyte and in the absence of hydrophobic anions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...