ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: For many years, merchant ships and the naval fleets of various countries have been the major source of data over and in the open ocean. Oceanographic research experiments and process studies in the field have also contributed to the climatological data bases for the global ocean, but, for the most part, these have been limited in duration and extent. However, over the last 10 years under the auspices of the World Climate Research Program and the International Geosphere Biosphere Program the role of the oceans in global and climate change has taken on increased significance. This has created a need for a considerably improved understanding of the seasonal, interannual, decadal and longer time-scale variability of the physical and biogeochemical attributes of the global ocean. As a result, over the past 10 years several major international field programs have been implemented and have had a tremendous impact on the number of in situ observations obtained for the global ocean. The Tropical Ocean Global Atmosphere (TOGA) program, the World Ocean Circulation Experiment (WOCE), and the Joint Global Ocean Flux Study (JGOFS) were designed with observational, modelling, and process study components aimed at analyzing different aspects of the ocean's role in the coupled climate system. In parallel with the field programs, continuous space-based observations of sea surface temperature, sea surface topography, and sea surface winds spanning nearly a decade or longer have become a reality. During this same time period, numerical ocean models and computational power have advanced to the point where the oceanographic observations, both in situ and remotely sensed, can be assimilated into numerical ocean models in order to provide a four-dimensional (x-y-z-t) depiction of the evolving state of the global ocean.
    Keywords: Oceanography
    Type: Laboratory for Hydrospheric Processes Research Publications; 19-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.
    Keywords: Oceanography
    Type: IGARSS''99; Jun 29, 1999 - Jul 02, 1999; Hamburg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We assess the impact of satellite sea surface salinity (SSS) observations on seasonal to interannual variability of tropical Indo-Pacific Ocean dynamics as well as on dynamical ENSO forecasts. Our coupled model is composed of a primitive equation ocean model for the tropical Indo-Pacific region that is coupled with the global SPEEDY atmospheric model (Molteni, 2003). The Ensemble Reduced Order Kalman Filter is used to assimilate observations to constrain dynamics and thermodynamics for initialization of the coupled model. The baseline experiment assimilates satellite sea level, SST, and in situ subsurface temperature and salinity observations. This baseline is then compared with experiments that additionally assimilate Aquarius (version 4.0) and SMAP (version 2.0) SSS. Twelve-month forecasts are initialized for each month from Sep. 2011 to Dec. 2016. We find that including satellite SSS significantly improves NINO 3.4 sea surface temperature anomaly validation after 1 out to 12 month forecast lead times. For initialization of the coupled forecast, the positive impact of SSS assimilation is brought about by surface freshening near the eastern edge of the western Pacific warm pool and density changes that lead to shallower mixed layer between 10 degrees South latitude-5 degrees North latitude. SST differences at initialization force wide-spread downwelling favorable curl over most of the tropical Pacific. Over an average forecast, SST remains warmer with SSS assimilation at the eastern edge of the warm pool. This warm SST propagates into the eastern Pacific and drags westerly wind anomalies eastward into the NINO 3.4 region. In addition, salting near the ITCZ (Intertropical Convergence Zone) leads to a deepening of the mixed layer and thermocline near 8 degrees North latitude. These patterns together lead to a funneling effect that provides the background state to amplify equatorial Kelvin waves. We show that the downwelling Kelvin waves are amplified by assimilating satellite SSS and lead to significantly improved forecasts particularly for the 2015 El Nino.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN52575 , 2018 Ocean Sciences Meeting; Feb 11, 2018 - Feb 16, 2018; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the National Oceanic and Atmospheric Administration (NOAA) WP-3D hurricane research aircraft at 1.5 km height. The open-ocean data were acquired on 24 August 1998 when Bonnie, a large category 3 hurricane, was east of the Bahamas and moving about 5 meters per second toward 330. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye and made five eye penetrations. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. On 26 August 1998, the SRA documented the wave spectrum spatial variation while Bonnie was making landfall near Wilmington, NC.
    Keywords: Oceanography
    Type: 6th International Conference on Remote for Marine and Coastal Env.; May 01, 2000 - May 03, 2000; Charleston, SC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The goal of this paper is to compare TOPEX/Posaidon (T/P) sea level with sea level results from linear ocean model experiments forced by several different wind products for the tropical Pacific. During the period of this study (October 1992 - October 1995), available wind products include satellite winds from the ERS-1 scatterometer product of [HALP 97] and the passive microwave analysis of SSMI winds produced using the variational analysis method (VAM) of [ATLA 91]. In addition, atmospheric GCM winds from the NCEP reanalysis [KALN 96], ECMWF analysis [ECMW94], and the Goddard EOS-1 (GEOS-1) reanalysis experiment [SCHU 93] are available for comparison. The observed ship wind analysis of FSU [STRI 92] is also included in this study. The linear model of [CANE 84] is used as a transfer function to test the quality of each of these wind products for the tropical Pacific. The various wind products are judged by comparing the wind-forced model sea level results against the T/P sea level anomalies. Correlation and RMS difference maps show how well each wind product does in reproducing the T/P sea level signal. These results are summarized in a table showing area average correlations and RMS differences. The large-scale low-frequency temporal signal is reproduced by all of the wind products, However, significant differences exist in both amplitude and phase on regional scales. In general, the model results forced by satellite winds do a better job reproducing the T/P signal (i.e. have a higher average correlation and lower RMS difference) than the results forced by atmospheric model winds.
    Keywords: Oceanography
    Type: Paper 1-11 , Laboratory for Hydrospheric Processes Research Publications; 213-214|Monitoring the Oceans in the 2000s: An Integrated Approach; Oct 15, 1997 - Oct 17, 1997; Biarritz; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The effects of the Indonesian throughflow(ITF) are studied in a reduced gravity, primitive equation, sigma coordinate model. The surface heat fluxes are provided by coupling the ocean GCAF to an advective atmospheric mixed layer model. There is an ENSO related signal in the ITF but the correlation with the Southern Oscillation Index (SOI) is only -0.31. When the winds over the Indian Ocean are held to climatology, this correlation jumps to -0.65 indicating that the non-EASO signal in the ITF is caused by the downstream winds. On interannual time-scales the ITF can be explained in terms of sea level differences between the western Pacific and eastern Indian Oceans when appropriate representative locations are chosen as demonstrated in both model and TOPEX data. It is shown that the main climatological effect of the ITF is to warm the Indian Ocean and cool the Pacific. Mile the main ENSO indices, NIN03 and NIN04, are almost identical with and without the ITF, the total SSTs show significant ENSO dependence.
    Keywords: Oceanography
    Type: Paper 1-12 , Monitoring the Oceans in the 2000s: An Integrated Approach; Oct 15, 1997 - Oct 17, 1997; Biarritz; France|Laboratory for Hydrospheric Processes Research Publications; 243-244
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: It is commonplace to begin talks on this topic by noting that oceanographic data are too scarce and sparse to provide complete initial and boundary conditions for large-scale ocean models. Even considering the availability of remotely-sensed data such as radar altimetry from the TOPEX and ERS-1 satellites, a glance at a map of available subsurface data should convince most observers that this is still the case. Data are still too sparse for comprehensive treatment of interannual to interdecadal climate change through the use of models, since the new data sets have not been around for very long. In view of the dearth of data, we must note that the overall picture is changing rapidly. Recently, there have been a number of large scale ocean analysis and prediction efforts, some of which now run on an operational or at least quasi-operational basis, most notably the model based analyses of the tropical oceans. These programs are modeled on numerical weather prediction. Aside from the success of the global tide models, assimilation of data in the tropics, in support of prediction and analysis of seasonal to interannual climate change, is probably the area of large scale ocean modeling and data assimilation in which the most progress has been made. Climate change is a problem which is particularly suited to advanced data assimilation methods. Linear models are useful, and the linear theory can be exploited. For the most part, the data are sufficiently sparse that implementation of advanced methods is worthwhile. As an example of a large scale data assimilation experiment with a recent extensive data set, we present results of a tropical ocean experiment in which the Kalman filter was used to assimilate three years of altimetric data from Geosat into a coarsely resolved linearized long wave shallow water model. Since nonlinear processes dominate the local dynamic signal outside the tropics, subsurface dynamical quantities cannot be reliably inferred from surface height anomalies. Because of its potential for large scale synoptic coverage of the deep ocean, acoustic travel time data should be a natural complement to satellite altimetry. Satellite data give us vertical integrals associated with thermodynamic and dynamic processes.
    Keywords: Oceanography
    Type: Assimilation of Observations in Meteorology and Oceanography; Mar 13, 1995 - Mar 17, 1995; Tokyo; Japan|Laboratory for Hydrospheric Processes Research Publications; 57-58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRAI) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
    Keywords: Oceanography
    Type: NASA/TM-2001-209976 , Rept-2001-01114-0 , NAS 1.15:209976
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...