ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: Sea surface temperatures (SSTs) mapped by IR satellite images and in situ hydrographic measurements off the west coast of British Columbia for early-winter and midsummer periods were correlated with in situ measurements of surface chlorophyll and zooplankton concentration. Correlations between winter log(e) transformed zooplankton concentrations and SSTs demonstrated that IR satellite imagery could explain 49 percent of the sampled zooplankton concentration variance. A least-squares-fit nonlinear equation showed that satellite-measured SST patterns explained 72 percent of the log(e) transformed chlorophyll variance. However, summer zooplankton concentrations were not consistently related to satellite temperature patterns.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 93; 15733-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: Monthly composite images from the global coastal zone color scanner (CZCS) data set are used to provide an initial illustration and comparison of seasonal and interannual variability of phytoplankton pigment concentration along the western coasts of South and North America in the Peru Current system (PCS) and California Current system (CCS). The analysis utilizes the entire time series of available data (November 1978 to June 1986) to form a mean annual cycle and an index of interannual variability for a series of both latitudinal and cross-shelf regions within each current system. Within 100 km of the coast, the strongest seasonal cycles in the CCS are in two regions, one between 34 deg and 45 deg N and the second between 24 deg and 29 deg N, each with maximum concentrations (greater than 3.0 mg m(exp-3)) in May-June. Weaker seasonal variability is present north of 45 deg N and in the Southern California Bight region (32 deg N). Within the PCS, in the same 100-km-wide coastal region, highest (greater than 45 deg S) and lowest (less than 20 deg S) latitude regions have a similar seasonal cycle with maximum concentrations (greater than 1.5 mg m(exp -3)) during the austral spring, summer, and fall, matching that evident throughout the CCS. Between these regions, off northern and central Chile, the seasonal maximum occurs during July-August (austral winter), contrary to the influence of upwelling favorable winds. Within the CCS, the dominant feature of interannual variability in the 8-year time series is a strong negative concentration anomaly in 1983, an El Nino year. The relative value of this negative anomaly is strongest off central California and is followed by an even stronger negative anomaly is strongest off central California and is followed by an even stronger negative anomaly in 1984 off Baja, California. In the PCS, strong negative anomalies during the 1982-1983 El Nino period are evident only off the Peruvian coast and are evident there only in the regions 100 km or more from the coast. Although negative anomalies associated with the El Nino were not present at higher latitudes (more than approximately 20 deg S) in the PCS, the extremely sparse sampling weakens our confidence in the results of the interannual analysis in this region. An upper estimate of the systematic winter bias remaining in the global CZCS data after reprocessing with the multiple scattering algorithm is given in the appendix.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C4; p. 7355-7370
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The seasonal and interannual variability of the latitudinal position of the California Current frontal zone was investigated by examining satellite images of phytoplankton pigment from the coastal-zone color scanner for the periods 1979-1983 and 1986. The pigment concentrations associated with the zonal front were also determined. A general seasonal cycle of pigment concentrations is was established. It was found that variations in the frontal structure are controlled primarily by changes in pigment concentration north of the front. Seasonal variations were found to be minimal south of the front, where pigment concentrations remain low throughout the spring, summer, and fall.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 13023-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A 5-year time series of coastal zone color scanner imagery (1980-1983, 1986) is used to examine changes in the large-scale pattern of chlorophyll pigment concentration coincident with the spring transition in winds and currents along the west coast of North America. The data show strong interannual variability in the timing and spatial patterns of pigment concentration at the time of the transition event. Interannual variability in the response of pigment concentration to the spring transition appears to be a function of spatial and temporal variability in vertical nutrient flux induced by wind mixing and/or the upwelling initiated at the time of the transition. Interannual differences in the mixing regime are illustrated with a one-dimensional mixing model.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 18095-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...