ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: Glass ceramic composites based on B2O3-Al2O3-MgO have been produced by combustion synthesis in a Self-propagating mode. The gravitational effects on the combustion characteristics such as combustion wave velocity (V), and combustion temperature (T(sub c)) were studied. The results showed that the gravitational effects on these parameters were inconclusive. The microstructure of this system has also been analyzed with X-ray Diffraction and light microscopy. These results showed a higher amount of divitrification occurs under both reduced gravity and high gravity conditions. The gravitational effects on formation of pores, overall porosity and apparent porosity for this family of glass-ceramics also shows to be inconclusive. Possible reasons for these results are discussed.
    Keywords: Nonmetallic Materials
    Type: 12th International Proceedings of the Experimental Methods for Microgravity Materials Science
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Combustion Synthesis technique has been used to produce glasses based on B2O3-Al2O3-MgO and CaO-Al2O3. The combustion characteristics of these combustion synthesis reactions using both small cylindrical pellets (SCP) and large spherical pellets (LSP) are presented. Low density pellets (approx. 35% of their theoretical density) were used, which made synthesis of low exothermic combustion reactions possible. Microstructural analysis of reacted samples was carried out to identify the glass-forming compositions. The effects of gravity on the glass formation were studied aboard the KC-135 using SCP samples. Gravity seemed to have such obvious effects on the combustion characteristics that the wave velocity was lower and the Width of the combustion wave was larger under reduced gravity conditions. Samples produced under low gravity also had more enhanced vitrification than those on ground, while some systems also exhibited lower combustion temperatures. It was also found that the container significantly affects both the combustion characteristics and microstructure. Substantially more divitrification occurred at the area which was in contact with the support (container).
    Keywords: Nonmetallic Materials
    Type: First International Symposium on Microgravity Research Applications in Physical Science and Biotechnology; Sep 10, 2000 - Sep 15, 2000; Sorrento; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-16
    Description: Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.
    Keywords: Nonmetallic Materials
    Type: 5th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2003-212931
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...