ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Carbon-dioxide production ; Climatic factors ; Microbial biomass ; Microbial nitrogen ; Mineral N flush ; Nitrogen mineralisation ; Pasture production ; Seasonal changes ; Water-soluble carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A 2-year study (1983–1984 to 1984–1985) was conducted to estimate temporal and seasonal changes and the effects of fertiliser on some soil chemical, biochemical and microbiological characteristics. The soil used was a Typic Vitrandept under grazed pasture. Soil samples were taken regularly to a depth of 75 mm from paired unfertilised and fertilised (500 kg ha− 30% potassic superphosphate) plots. Except for organic C, fertiliser had little or no effect on the characteristics measured. Organic C averaged about 9.2% in unfertilised soil and was about 0.3% higher in the fertilised soil. The size of the microbial biomass fluctuated widely in the 1st year (3000 μg C g−1 in February to 1300 μg C g−1 in September) but there was less variation in the 2nd year (range 1900 μg C g−1 to 2500 μg C g−1 soil). CO2 production values (10- to 20-day estimates averaged 600 μg of CO2-C g−1 soil) were generally higher in spring compared to the rest of the year. Water extractable C increased over winter and declined through spring in both years (range 50 μg C g−1 soil to 150 μg C g−1 soil). Mineral-N flush values were higher in summer (300 μg N g−1 soil) and lower in winter months (200 μg N g−1 soil). The pattern of variation of microbial N values was one of gradual accumulation followed by rapid decline. This rapid decline in values occurred in spring and autumn (range 130–220 μg N g−1 soil). N mineralisation and bicarbonate-extractable N showed no clear trend; these values ranged from 100–200 and 122–190 μg N g−1 soil, respectively. There was a significant correlation (0.1%) between N mineralisation and bicarbonate-extractable N in the late summer-autumn-early winter period (February–August) in both years but not in spring. These results and their relationships to climatic factors and rates of pasture production are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...