ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-01
    Description: In this work, we tackle the problem of seismic hazard at Etna deriving from the recurrent seismogenic activity of local faults, by adopting two independent methods based on probabilistic approaches. We assess the hazard in terms of macroseismic intensity and represent the occurrence probability calculated for different exposure times both on maps and at fault scale. Seismic hazard maps obtained by applying the “site approach” through the SASHA code and a new probabilistic attenuation model, indicate the eastern flank of the volcano as the most hazardous, with expected intensity (Iexp) in 50 years (i.e. the standard exposure time adopted in the seismic regulations) ranging from degrees IX to X EMS. In shorter exposure periods (20, 10, 5 years), values of Iexp up to IX are also reached in the same area, but they are clearly determined by the earthquakes generated by the Timpe fault system. In order to quantify the contribution of local seismogenic sources to the hazard of the region, we reconstruct the seismic history of each fault and calculate with SASHA the probability that earthquakes of a given intensity may be generated in different exposure times. Results confirm the high level of hazard due to the S. Tecla, Moscarello and Fiandaca faults especially for earthquakes of moderate intensity, i.e. VI≤I0≤VII, with probabilities respectively exceeding 50% and 20% in 10 years, and 30% and 10% in 5 years. Occurrence probability of major events (I0≥VIII) at the fault scale has also been investigated by statistics on intertimes. Under stationary assumptions we obtain a probability of 6.8% in 5 years for each structure; by introducing the time-dependency (time elapsed since the last event occurred on each fault) through a BPT model, we identify the Moscarello and S. Tecla faults as the most probable sources to be activated in the next 5 years (2013–2017). This result may represent a useful indication to establish priority criteria for actions aimed at reducing seismic risk at a local scale.
    Description: Published
    Description: 158-169
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity ; Seismic history ; Occurrence probability ; Time-dependent renewal process ; Individual sources ; Seismic hazard ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-01
    Description: We investigated the seismic potential of a given set of faults in the Etna region, by analysing the inter-event times of major earthquakes as given by the earthquake catalogue. Among the active structures of the volcano, the Timpe fault system in the eastern flank is responsible for the largest earthquakes occurring in historical time, with long-term behaviour characterised by earthquake rates of ~ 20 years for severe/destructive events (epicentral intensity I0 ≥ VIII EMS). By means of coseismic effect analyses and thanks to the peculiarity of earthquake source in this volcanic district, we associated the seismic events to the individual seismogenic sources, obtaining the seismic history of each fault. Mean recurrence time of major events referred to a specific fault can therefore be defined. Then, we calculated the probabilities of occurrence of destructive events both with Poisson and Brownian Passage Time (BPT) models. A time-dependent BPT distribution function has been used to calculate the conditional occurrence probability for each structure of the Timpe seismogenic zone. In a memoryless perspective, the probability of having a major earthquake on individual faults is about 7% in 5 years, while it changes from fault to fault if the probability is conditioned to the time elapsed since the last event. As a result, impending earthquakes are expected on the S. Tecla fault (11%), and on Moscarello and Fiandaca faults (~ 6-9%), all involved in the complex dynamics of the eastern flank of Mt. Etna. These results are consistent with those independently obtained through the site approach, calculated by the SASHA code.
    Description: Funding provided by the Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC), project V4 Flank.
    Description: Published
    Description: 75-88
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Sicily ; fault-based seismic hazard ; time-dependent estimate ; Brownian Passage Time ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...