ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Monsoon  (1)
  • Wadi Fins  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Stockli, D. F., Ireland, T., Murray, R. W., & Clift, P. D. Zircon U-Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea. Geochemistry Geophysics Geosystems, 23(1), (2022): e2021GC010158, https://doi.org/10.1029/2021GC010158.
    Description: The Indus Fan, located in the Arabian Sea, contains the bulk of the sediment eroded from the Western Himalaya and Karakoram. Scientific drilling in the Laxmi Basin by the International Ocean Discovery Program recovered a discontinuous erosional record for the Indus River drainage dating back to at least 9.8 Ma, and with a single sample from 15.6 Ma. We dated detrital zircon grains by U-Pb geochronology to reconstruct how erosion patterns changed through time. Long-term increases in detrital zircon U-Pb components of 750–1,200 and 1,500–2,300 Ma record increasing preferential erosion of the Himalaya relative to the Karakoram between 8.3–7.0 and 5.9–5.7 Ma. The average contribution of Karakoram-derived sediment to the Indus Fan fell from 70% of the total at 8.3–7.0 Ma to 35% between 5.9 and 5.7 Ma. An increase in the contribution of 1,500–2,300 Ma zircons starting between 2.5 and 1.6 Ma indicates significant unroofing of the Inner Lesser Himalaya (ILH) by that time. The trend in zircon age spectra is consistent with bulk sediment Nd isotope data. The initial change in spatial erosion patterns at 7.0–5.9 Ma occurred during a time of drying climate in the foreland. The increase in ILH erosion postdated the onset of dry-wet glacial-interglacial cycles suggesting some role for climate control. However, erosion driven by rising topography in response to formation of the ILH thrust duplex, especially during the Pliocene, also played an important role, while the influence of the Nanga Parbat Massif to the total sediment flux was modest.
    Description: This work was partially funded by a grant from the USSSP, as well as additional funding from the Charles T. McCord Chair in petroleum geology at LSU, and the Chevron (Gulf) Centennial professorship and the UTChron Laboratory at the University of Texas.
    Keywords: Erosion ; Zircon ; Monsoon ; Himalaya ; Provenance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(5), (2020): e2019JB018632, doi:10.1029/2019JB018632.
    Description: Carbonate‐altered peridotite are common in continental and oceanic settings and it has been suggested that peridotite‐hosted carbonate represent a significant component of the carbon‐cycle and provide an important link in the CO2 dynamics between the atmosphere, hydrosphere, and lithosphere. The ability to constrain the timing of carbonate and accessory phase growth is key to interpreting the mechanisms that contribute to carbonate alteration, veining, and mineralization in ultramafic rocks. Here we examine a mantle section of the Samail ophiolite exposed in Wadi Fins in southeastern Oman where the peridotite is unconformably overlain by Late Cretaceous‐Paleogene limestone and crosscut by an extensive network of carbonate veins and fracture‐controlled alteration. Three previous 87Sr/86Sr measurements on carbonate vein material in the peridotite produce results consistent with vein formation involving Cretaceous to Eocene seawater (de Obeso & Kelemen, 2018, https://doi.org/10.1098/rsta.2018.0433). We employ (U‐Th)/He chronometry to constrain the timing of hydrothermal magnetite in the calcite veins in the peridotite. Magnetite (U‐Th)/He ages of crystal sizes ranging from 1 cm to 200 μm record Miocene growth at 15 ± 4 Ma, which may indicate (1) fluid–rock interaction and carbonate precipitation in the Miocene, or (2) magnetite (re)crystallization within pre‐existing veins. Taken together with published Sr‐isotope values, these results suggest that carbonate veining at Wadi Fins started as early as the Cretaceous, and continued in the Miocene associated with magnetite growth. The timing of hydrothermal magnetite growth is coeval with Neogene shortening and faulting in southern Oman, which points to a tectonic driver for vein (re)opening and fluid‐rock alteration.
    Description: This research was supported by a National Science Foundation (NSF) Graduate Research Fellowship to E.H.G. Cooperdock, the UTChron Laboratory at The University of Texas at Austin, the Chevron (Gulf) Centennial Professorship to D.F. Stockli, and by a Sloan Foundation grant awarded to P.B. Kelemen. We are grateful to Desmond Patterson for assistance and training with He measurements and data reduction, to Jessie Maisano for technical support with the X‐Ray Computed Tomography. These data and images were produced at the High‐Resolution X‐ray Computed Tomography Facility of the University of Texas at Austin. EHGC is grateful to Jaime Barnes, Richard Ketcham, Frieder Klein and Othmar Müntener for helpful comments on an earlier version of this manuscript. Thank you to Fin Stuart and Uwe Ring for their helpful reviews, and Stephen Parman for feedback and editorial handling of the manuscript. The (U‐Th)/He data in this manuscript are available in the GeoChron repository (https://www.geochron.org) and sample IGSNs are in the SESAR database (http://www.geosamples.org).
    Description: 2020-10-06
    Keywords: magnetite ; U‐Th/He thermochronology ; ophicarbonate ; Oman ; Wadi Fins ; serpentinite
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...