ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-25
    Description: Alkenes are found in many biologically active molecules, and there are a large number of chemical transformations in which alkenes act as the reactants or products (or both) of the reaction. Many alkenes exist as either the E or the higher-energy Z stereoisomer. Catalytic procedures for the stereoselective formation of alkenes are valuable, yet methods enabling the synthesis of 1,2-disubstituted Z alkenes are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and of allylic amides, used until now only in E-selective processes. The corresponding disubstituted alkenes are formed in up to 〉98% Z selectivity and 97% yield. These transformations, promoted by catalysts that contain the highly abundant and inexpensive metal molybdenum, are amenable to gram-scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. The utility of this method is demonstrated by its use in syntheses of an anti-oxidant plasmalogen phospholipid, found in electrically active tissues and implicated in Alzheimer's disease, and the potent immunostimulant KRN7000.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meek, Simon J -- O'Brien, Robert V -- Llaveria, Josep -- Schrock, Richard R -- Hoveyda, Amir H -- GM-59426/GM/NIGMS NIH HHS/ -- R01 GM059426/GM/NIGMS NIH HHS/ -- R01 GM059426-12/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):461-6. doi: 10.1038/nature09957.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430774" target="_blank"〉PubMed〈/a〉
    Keywords: Adjuvants, Immunologic/chemical synthesis/chemistry ; Alkenes/*chemical synthesis/*chemistry ; Amides/chemical synthesis/chemistry ; Antioxidants/metabolism ; Biological Products/*chemical synthesis/*chemistry ; Catalysis ; Ethers/chemistry ; Galactosylceramides/chemical synthesis/chemistry ; Molecular Structure ; Molybdenum/chemistry ; Plasmalogens/chemical synthesis/chemistry ; Stereoisomerism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-25
    Description: Olefin metathesis has had a large impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is limited. Here we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of a catalyst that is generated in situ and used with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents, and proceed to high conversion at ambient temperature within four hours. We obtain many alkenyl chlorides, bromides and fluorides in up to 91 per cent yield and complete Z selectivity. This method can be used to synthesize biologically active compounds readily and to perform site- and stereoselective fluorination of complex organic molecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858352/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858352/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koh, Ming Joo -- Nguyen, Thach T -- Zhang, Hanmo -- Schrock, Richard R -- Hoveyda, Amir H -- GM-57212/GM/NIGMS NIH HHS/ -- GM-59426/GM/NIGMS NIH HHS/ -- R01 GM059426/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 24;531(7595):459-65. doi: 10.1038/nature17396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA. ; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27008965" target="_blank"〉PubMed〈/a〉
    Keywords: Alkenes/chemical synthesis/*chemistry ; Biological Products/chemical synthesis/chemistry ; Bromides/*chemical synthesis/chemistry ; Catalysis ; Chlorides/*chemical synthesis/chemistry ; Fluorides/*chemical synthesis/chemistry ; *Halogenation ; Molybdenum/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...