ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-06-26
    Description: Recent studies in bacterial pathogenesis reveal common and contrasting mechanisms of pathogen virulence and host resistance in plant and animal diseases. This review presents recent developments in the study of plant and animal pathogenesis, with respect to bacterial colonization and the delivery of effector proteins to the host. Furthermore, host defense responses in both plants and animals are discussed in relation to mechanisms of pathogen recognition and defense signaling. Future studies will greatly add to our understanding of the molecular events defining host-pathogen interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Staskawicz, B J -- Mudgett, M B -- Dangl, J L -- Galan, J E -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2285-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA. stask@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteria/genetics/metabolism/*pathogenicity ; Bacterial Infections/immunology/microbiology ; Bacterial Proteins/chemistry/genetics/metabolism ; Genes, Bacterial ; Genes, Plant ; Immunity, Innate ; Molecular Sequence Data ; Plant Diseases/*microbiology ; Plant Proteins/chemistry/genetics/metabolism ; Plants/genetics/metabolism/*microbiology ; Proteins/genetics/metabolism ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-13
    Description: Many bacterial pathogens encode a multisubunit toxin, termed cytolethal distending toxin (CDT), that induces cell cycle arrest, cytoplasm distention, and, eventually, chromatin fragmentation and cell death. In one such pathogen, Campylobacter jejuni, one of the subunits of this toxin, CdtB, was shown to exhibit features of type I deoxyribonucleases. Transient expression of this subunit in cultured cells caused marked chromatin disruption. Microinjection of low amounts of CdtB induced cytoplasmic distention and cell cycle arrest. CdtB mutants with substitutions in residues equivalent to those required for catalysis or magnesium binding in type I deoxyribonucleases did not cause chromatin disruption. CDT holotoxin containing these mutant forms of CdtB did not induce morphological changes or cell cycle arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lara-Tejero, M -- Galan, J E -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030657" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Toxins/chemistry/genetics/*metabolism/*toxicity ; COS Cells ; *Campylobacter jejuni/genetics/pathogenicity ; Cell Death ; Cell Line ; Cell Nucleus/metabolism ; Chromatin/ultrastructure ; DNA/*metabolism ; *DNA Damage ; Deoxyribonuclease I/chemistry/*metabolism ; *G2 Phase ; Microinjections ; Molecular Sequence Data ; Mutation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-12
    Description: Salmonella enterica serovar Typhi (S. Typhi) differs from most other salmonellae in that it causes a life-threatening systemic infection known as typhoid fever. The molecular bases for its unique clinical presentation are unknown. Here we find that the systemic administration of typhoid toxin, a unique virulence factor of S. Typhi, reproduces many of the acute symptoms of typhoid fever in an animal model. We identify specific carbohydrate moieties on specific surface glycoproteins that serve as receptors for typhoid toxin, which explains its broad cell target specificity. We present the atomic structure of typhoid toxin, which shows an unprecedented A2B5 organization with two covalently linked A subunits non-covalently associated to a pentameric B subunit. The structure provides insight into the toxin's receptor-binding specificity and delivery mechanisms and reveals how the activities of two powerful toxins have been co-opted into a single, unique toxin that can induce many of the symptoms characteristic of typhoid fever. These findings may lead to the development of potentially life-saving therapeutics against typhoid fever.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144355/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144355/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Jeongmin -- Gao, Xiang -- Galan, Jorge E -- AI079022/AI/NIAID NIH HHS/ -- GM098791/GM/NIGMS NIH HHS/ -- R01 AI114618/AI/NIAID NIH HHS/ -- R24 GM098791/GM/NIGMS NIH HHS/ -- U54-AI057158/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jul 18;499(7458):350-4. doi: 10.1038/nature12377. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842500" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Endotoxins/*chemistry/metabolism/toxicity ; Membrane Glycoproteins/metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Subunits/chemistry/metabolism ; Salmonella typhi/*pathogenicity ; Sialoglycoproteins/chemistry ; Structure-Activity Relationship ; Typhoid Fever/microbiology ; Virulence Factors/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-05
    Description: Bacterial type III protein secretion systems deliver effector proteins into eukaryotic cells in order to modulate cellular processes. Central to the function of these protein-delivery machines is their ability to recognize and secrete substrates in a defined order. Here, we describe a mechanism by which a type III secretion system from the bacterial enteropathogen Salmonella enterica serovar Typhimurium can sort its substrates before secretion. This mechanism involves a cytoplasmic sorting platform that is sequentially loaded with the appropriate secreted proteins. The sequential loading of this platform, facilitated by customized chaperones, ensures the hierarchy in type III protein secretion. Given the presence of these machines in many important pathogens, these findings can serve as the bases for the development of novel antimicrobial strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lara-Tejero, Maria -- Kato, Junya -- Wagner, Samuel -- Liu, Xiaoyun -- Galan, Jorge E -- AI30492/AI/NIAID NIH HHS/ -- R01 AI030492/AI/NIAID NIH HHS/ -- U54 AI0157158/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1188-91. doi: 10.1126/science.1201476. Epub 2011 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292939" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, Bacterial/chemistry/metabolism ; Bacterial Proteins/chemistry/*metabolism ; Bacterial Secretion Systems/*physiology ; Cytoplasm/metabolism ; Membrane Proteins/chemistry/*metabolism ; Molecular Chaperones/chemistry/*metabolism ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Mutation ; Protein Binding ; Protein Transport ; Salmonella typhimurium/genetics/*metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-20
    Description: Unlike other Salmonellae, the intracellular bacterial human pathogen Salmonella Typhi exhibits strict host specificity. The molecular bases for this restriction are unknown. Here we found that the expression of a single type III secretion system effector protein from broad-host Salmonella Typhimurium allowed Salmonella Typhi to survive and replicate within macrophages and tissues from mice, a nonpermissive host. This effector proteolytically targeted Rab32, which controls traffic to lysosome-related organelles in conjunction with components of the biogenesis of lysosome-related organelle complexes (BLOCs). RNA interference-mediated depletion of Rab32 or of an essential component of a BLOC complex was sufficient to allow S. Typhi to survive within mouse macrophages. Furthermore, S. Typhi was able to survive in macrophages from mice defective in BLOC components.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693731/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693731/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spano, Stefania -- Galan, Jorge E -- AI055472/AI/NIAID NIH HHS/ -- AI079022/AI/NIAID NIH HHS/ -- R01 AI055472/AI/NIAID NIH HHS/ -- R01 AI079022/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):960-3. doi: 10.1126/science.1229224.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23162001" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Secretion Systems/genetics/*physiology ; COS Cells ; Cercopithecus aethiops ; *Host-Pathogen Interactions ; Humans ; Lysosomes/metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Phylogeny ; RNA Interference ; Salmonella typhi/genetics/*physiology ; rab GTP-Binding Proteins/classification/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...