ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-07-07
    Description: Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beer, Christian -- Reichstein, Markus -- Tomelleri, Enrico -- Ciais, Philippe -- Jung, Martin -- Carvalhais, Nuno -- Rodenbeck, Christian -- Arain, M Altaf -- Baldocchi, Dennis -- Bonan, Gordon B -- Bondeau, Alberte -- Cescatti, Alessandro -- Lasslop, Gitta -- Lindroth, Anders -- Lomas, Mark -- Luyssaert, Sebastiaan -- Margolis, Hank -- Oleson, Keith W -- Roupsard, Olivier -- Veenendaal, Elmar -- Viovy, Nicolas -- Williams, Christopher -- Woodward, F Ian -- Papale, Dario -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):834-8. doi: 10.1126/science.1184984. Epub 2010 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. christian.beer@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20603496" target="_blank"〉PubMed〈/a〉
    Keywords: Artificial Intelligence ; Atmosphere ; Carbon Dioxide/*metabolism ; *Climate ; Climatic Processes ; *Ecosystem ; Geography ; Models, Biological ; Models, Statistical ; Neural Networks (Computer) ; Oxygen Consumption ; *Photosynthesis ; Plant Leaves/*metabolism ; Plants/*metabolism ; Temperature ; Trees/metabolism ; Uncertainty ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-07-07
    Description: The respiratory release of carbon dioxide (CO(2)) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO(2) uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate-carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q(10)) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q(10) is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 +/- 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate-carbon cycle feedback than suggested by current carbon cycle climate models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahecha, Miguel D -- Reichstein, Markus -- Carvalhais, Nuno -- Lasslop, Gitta -- Lange, Holger -- Seneviratne, Sonia I -- Vargas, Rodrigo -- Ammann, Christof -- Arain, M Altaf -- Cescatti, Alessandro -- Janssens, Ivan A -- Migliavacca, Mirco -- Montagnani, Leonardo -- Richardson, Andrew D -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):838-40. doi: 10.1126/science.1189587. Epub 2010 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. mmahecha@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20603495" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/metabolism ; Carbon Dioxide/*metabolism ; Cell Respiration ; *Climate ; Ecological and Environmental Processes ; *Ecosystem ; Models, Biological ; Models, Statistical ; Photosynthesis ; Plants/*metabolism ; Soil/analysis ; Soil Microbiology ; *Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...