ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mixotrophy  (1)
  • Protozoa  (1)
  • 1
    Publication Date: 2018-07-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 5 (2018): 241, doi:10.3389/fmars.2018.00241.
    Description: Cryptophyte algae are globally distributed photosynthetic flagellates found in freshwater, estuarine, and neritic ecosystems. While cryptophytes can be highly abundant and are consumed by a wide variety of protistan predators, few studies have sought to quantify in situ grazing rates on their populations. Here we show that autumnal grazing rates on in situ communities of cryptophyte algae in Chesapeake Bay are high throughout the system, while growth rates, particularly in the lower bay, were low. Analysis of the genetic diversity of cryptophyte populations within dilution experiments suggests that microzooplankton may be selectively grazing the fastest-growing members of the population, which were generally Teleaulax spp. We also demonstrate that potential grazing rates of ciliates and dinoflagellates on fluorescently labeled (FL) Rhodomonas salina, Storeatula major, and Teleaulax amphioxeia can be high (up to 149 prey predator−1 d−1), and that a Gyrodinium sp. and Mesodinium rubrum could be selective grazers. Potential grazing was highest for heterotrophic dinoflagellates, but due to its abundance, M. rubrum also had a high overall impact. This study reveals that cryptophyte algae in Chesapeake Bay can experience extremely high grazing pressure from phagotrophic protists, and that this grazing likely shapes their community diversity.
    Description: The authors thank the National Science Foundation (OCE 1031718 and 1436169) for providing support for this research.
    Keywords: Cryptophytes ; Mixotrophy ; Grazing ; Chesapeake Bay ; Dinoflagellates ; Mesodinium rubrum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Ecology Progress Series 550 (2016): 65-81, doi:10.3354/meps11687.
    Description: Protozoa play important roles in grazing and nutrient recycling, but quantifying these roles has been hindered by difficulties in collecting, culturing, and observing these often-delicate cells. During long-term deployments at the Martha’s Vineyard Coastal Observatory (Massachusetts, USA), Imaging FlowCytobot (IFCB) has been shown to be useful for studying live cells in situ without the need to culture or preserve. IFCB records images of cells with chlorophyll fluorescence above a trigger threshold, so to date taxonomically resolved analysis of protozoa has presumably been limited to mixotrophs and herbivores which have eaten recently. To overcome this limitation, we have coupled a broad-application ‘live cell’ fluorescent stain with a modified IFCB so that protozoa which do not contain chlorophyll (such as consumers of unpigmented bacteria and other heterotrophs) can also be recorded. Staining IFCB (IFCB-S) revealed higher abundances of grazers than the original IFCB, as well as some cell types not previously detected. Feeding habits of certain morphotypes could be inferred from their fluorescence properties: grazers with stain fluorescence but without chlorophyll cannot be mixotrophs, but could be either starving or feeding on heterotrophs. Comparisons between cell counts for IFCB-S and manual light microscopy of Lugol’s stained samples showed consistently similar or higher counts from IFCB-S. We show how automated classification through the extraction of image features and application of a machine-learning algorithm can be used to evaluate the large high-resolution data sets collected by IFCBs; the results reveal varying seasonal patterns in abundance among groups of protists.
    Description: This research was supported in part by NSF (grants OCE-1130140, OCE-1434440), NASA (grants NNX11AF07G and NNX13AC98G), the Gordon and Betty Moore Foundation (grants 934 and 2649), and the Woods Hole Oceanographic Institution’s Innovative Technology Program.
    Keywords: Protozoa ; Microzooplankton ; Automated imaging ; Fluorescent staining ; Flow cytometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...