ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aquaculture Environment Interactions 9 (2017): 331-346, doi:10.3354/aei00238.
    Description: Tropical coral reefs are characterized by low-nutrient waters that support oligotrophic picoplankton over a productive benthic ecosystem. Nutrient-rich effluent released from aquaculture facilities into coral reef environments may potentially upset the balance of these ecosystems by altering picoplankton dynamics. In this study, we examined how effluent from a prawn (Litopenaeus vannamei) farming facility in Al Lith, Saudi Arabia, impacted the inorganic nutrients and prokaryotic picoplankton community in the waters overlying coral reefs in the Red Sea. Across 24 sites, ranging 0-21 km from the effluent point source, we measured nutrient concentrations, quantified microbial cell abundances, and sequenced bacterial and archaeal small subunit ribosomal RNA (SSU rRNA) genes to examine picoplankton phylogenetic diversity and community composition. Our results demonstrated that sites nearest to the outfall had increased concentrations of phosphate and ammonium and elevated abundances of non-pigmented picoplankton (generally heterotrophic bacteria). Shifts in the composition of the picoplankton community were observed with increasing distance from the effluent canal outfall. Waters within 500 m of the outfall harbored the most distinct picoplanktonic community and contained putative pathogens within the genus Francisella and order Rickettsiales. While our study suggests that at the time of sampling, the Al Lith aquaculture facility exhibited relatively minor influences on inorganic nutrients and microbial communities, studying the longer-term impacts of the aquaculture effluent on the organisms within the reef will be necessary in order to understand the full extent of the facility’s impact on the reef ecosystem.
    Description: This research was supported by a Woods Hole Oceanographic Institution (WHOI) Ocean Life Institute postdoctoral scholar fellowship to A.A., the Semester at WHOI Program supporting C.B., and Award No. USA 00002 to K.H. made by King Abdullah University of Science and Technology (KAUST).
    Keywords: Aquaculture ; Litopenaeus vannamei ; Oligotrophic ; Microbial community ; Coral reef ; SSU rRNA gene ; Francisella spp.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...