ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-03
    Description: The rapid turnover and exfoliation of mucosal epithelial cells provides an innate defence system against bacterial infection. Nevertheless, many pathogenic bacteria, including Shigella, are able to surmount exfoliation and colonize the epithelium efficiently. Here we show that the Shigella flexneri effector OspE (consisting of OspE1 and OspE2 proteins), which is highly conserved among enteropathogenic Escherichia coli, enterohaemorrhagic E. coli, Citrobacter rodentium and Salmonella strains, reinforces host cell adherence to the basement membrane by interacting with integrin-linked kinase (ILK). The number of focal adhesions was augmented along with membrane fraction ILK by ILK-OspE binding. The interaction between ILK and OspE increased cell surface levels of 1 integrin and suppressed phosphorylation of focal adhesion kinase and paxillin, which are required for rapid turnover of focal adhesion in cell motility. Nocodazole-washout-induced focal adhesion disassembly was blocked by expression of OspE. Polarized epithelial cells infected with a Shigella mutant lacking the ospE gene underwent more rapid cell detachment than cells infected with wild-type Shigella. Infection of guinea pig colons with Shigella corroborated the pivotal role of the OspE-ILK interaction in suppressing epithelial detachment, increasing bacterial cell-to-cell spreading, and promoting bacterial colonization. These results indicate that Shigella sustain their infectious foothold by using special tactics to prevent detachment of infected cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Minsoo -- Ogawa, Michinaga -- Fujita, Yukihiro -- Yoshikawa, Yuko -- Nagai, Takeshi -- Koyama, Tomohiro -- Nagai, Shinya -- Lange, Anika -- Fassler, Reinhard -- Sasakawa, Chihiro -- England -- Nature. 2009 May 28;459(7246):578-82. doi: 10.1038/nature07952.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Disease Control, International Research Center for Infectious Diseases, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19489119" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD29/metabolism ; Bacterial Outer Membrane Proteins/genetics/metabolism ; Cell Adhesion/drug effects/*physiology ; Cell Polarity ; Colon/microbiology ; Epithelial Cells/cytology/microbiology ; Focal Adhesions/drug effects/*physiology ; Guinea Pigs ; HeLa Cells ; Humans ; Mice ; Nocodazole/pharmacology ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/*metabolism ; Shigella flexneri/pathogenicity/*physiology ; Virulence Factors/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-13
    Description: Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774895/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774895/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goto, Yoshiyuki -- Obata, Takashi -- Kunisawa, Jun -- Sato, Shintaro -- Ivanov, Ivaylo I -- Lamichhane, Aayam -- Takeyama, Natsumi -- Kamioka, Mariko -- Sakamoto, Mitsuo -- Matsuki, Takahiro -- Setoyama, Hiromi -- Imaoka, Akemi -- Uematsu, Satoshi -- Akira, Shizuo -- Domino, Steven E -- Kulig, Paulina -- Becher, Burkhard -- Renauld, Jean-Christophe -- Sasakawa, Chihiro -- Umesaki, Yoshinori -- Benno, Yoshimi -- Kiyono, Hiroshi -- 1R01DK098378/DK/NIDDK NIH HHS/ -- R01 DK098378/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1254009. doi: 10.1126/science.1254009. Epub 2014 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, Osaka 567-0085, Japan. Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Nippon Institute for Biological Science, Tokyo 198-0024, Japan. ; Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Yakult Central Institute, Tokyo 186-8650, Japan. ; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Department of Mucosal Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan. ; Department of Obstetrics and Gynecology, Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, MI 48109-5617, USA. ; Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland. ; Ludwig Institute for Cancer Research and Universite Catholique de Louvain, Brussels B-1200, Belgium. ; Nippon Institute for Biological Science, Tokyo 198-0024, Japan. Division of Bacterial Infection, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan. ; Benno Laboratory, Innovation Center, RIKEN, Wako, Saitama 351-0198, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214634" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Disease Models, Animal ; Fucose/*metabolism ; Fucosyltransferases/genetics/metabolism ; Germ-Free Life ; Glycosylation ; Goblet Cells/enzymology/immunology/microbiology ; Ileum/enzymology/immunology/microbiology ; *Immunity, Innate ; Interleukins/immunology ; Intestinal Mucosa/enzymology/*immunology/microbiology ; Lymphocytes/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota/*immunology ; Molecular Sequence Data ; Paneth Cells/enzymology/immunology/microbiology ; Salmonella Infections/*immunology/microbiology ; *Salmonella typhimurium
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-04
    Description: The degradation of undesirable cellular components or organelles, including invading microbes, by autophagy is crucial for cell survival. Here, Shigella, an invasive bacteria, was found to be able to escape autophagy by secreting IcsB by means of the type III secretion system. Mutant bacteria lacking IcsB were trapped by autophagy during multiplication within the host cells. IcsB did not directly inhibit autophagy. Rather, Shigella VirG, a protein required for intracellular actin-based motility, induced autophagy by binding to the autophagy protein, Atg5. In nonmutant Shigella, this binding is competitively inhibited by IcsB binding to VirG.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogawa, Michinaga -- Yoshimori, Tamotsu -- Suzuki, Toshihiko -- Sagara, Hiroshi -- Mizushima, Noboru -- Sasakawa, Chihiro -- New York, N.Y. -- Science. 2005 Feb 4;307(5710):727-31. Epub 2004 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576571" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Bacterial Proteins/genetics/*metabolism ; Cell Line ; DNA-Binding Proteins/*metabolism ; Humans ; Mice ; Mice, Knockout ; Microscopy, Electron ; Microtubule-Associated Proteins/metabolism ; Phagosomes/metabolism/*microbiology/ultrastructure ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Shigella flexneri/genetics/growth & development/metabolism/*pathogenicity ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-13
    Description: Many bacterial pathogens can enter various host cells and then survive intracellularly, transiently evade humoral immunity, and further disseminate to other cells and tissues. When bacteria enter host cells and replicate intracellularly, the host cells sense the invading bacteria as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by way of various pattern recognition receptors. As a result, the host cells induce alarm signals that activate the innate immune system. Therefore, bacteria must modulate host inflammatory signalling and dampen these alarm signals. How pathogens do this after invading epithelial cells remains unclear, however. Here we show that OspI, a Shigella flexneri effector encoded by ORF169b on the large plasmid and delivered by the type IotaIotaIota secretion system, dampens acute inflammatory responses during bacterial invasion by suppressing the tumour-necrosis factor (TNF)-receptor-associated factor 6 (TRAF6)-mediated signalling pathway. OspI is a glutamine deamidase that selectively deamidates the glutamine residue at position 100 in UBC13 to a glutamic acid residue. Consequently, the E2 ubiquitin-conjugating activity required for TRAF6 activation is inhibited, allowing S. flexneri OspI to modulate the diacylglycerol-CBM (CARD-BCL10-MALT1) complex-TRAF6-nuclear-factor-kappaB signalling pathway. We determined the 2.0 A crystal structure of OspI, which contains a putative cysteine-histidine-aspartic acid catalytic triad. A mutational analysis showed this catalytic triad to be essential for the deamidation of UBC13. Our results suggest that S. flexneri inhibits acute inflammatory responses in the initial stage of infection by targeting the UBC13-TRAF6 complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Takahito -- Kim, Minsoo -- Mimuro, Hitomi -- Suzuki, Masato -- Ogawa, Michinaga -- Oyama, Akiho -- Ashida, Hiroshi -- Kobayashi, Taira -- Koyama, Tomohiro -- Nagai, Shinya -- Shibata, Yuri -- Gohda, Jin -- Inoue, Jun-ichiro -- Mizushima, Tsunehiro -- Sasakawa, Chihiro -- England -- Nature. 2012 Mar 11;483(7391):623-6. doi: 10.1038/nature10894.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Disease Control, International Research Center for Infectious Diseases, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22407319" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing/metabolism ; Amidohydrolases/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Animals ; Aspartic Acid/metabolism ; Biocatalysis ; Caspases/metabolism ; Catalytic Domain/genetics ; Crystallography, X-Ray ; Cysteine/metabolism ; DNA Mutational Analysis ; Diglycerides/antagonists & inhibitors/metabolism ; Dysentery, Bacillary/microbiology ; Glutamic Acid/metabolism ; Glutamine/metabolism ; HEK293 Cells ; HeLa Cells ; Histidine/metabolism ; Humans ; Immunity, Innate ; Inflammation/enzymology/*immunology/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; NF-kappa B/metabolism ; Neoplasm Proteins/metabolism ; Shigella flexneri/*enzymology/genetics/*immunology/pathogenicity ; TNF Receptor-Associated Factor 6/deficiency/genetics/metabolism ; Ubiquitin-Conjugating Enzymes/chemistry/genetics/*metabolism ; Virulence Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-11-11
    Description: Some pathogenic bacteria actually invade the cytoplasm of their target host cells. Invasive bacteria acquire the propulsive force to move by recruiting actin and inducing its polymerization. Here we show that Shigella movement within the cytoplasm was severely hindered by microtubules and that the bacteria destroyed surrounding microtubules by secreting VirA by means of the type III secretion system. Degradation of microtubules by VirA was dependent on its alpha-tubulin-specific cysteine protease-like activity. virA mutants did not move within the host cytoplasm and failed to move into adjacent cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida, Sei -- Handa, Yutaka -- Suzuki, Toshihiko -- Ogawa, Michinaga -- Suzuki, Masato -- Tamai, Asuka -- Abe, Akio -- Katayama, Eisaku -- Sasakawa, Chihiro -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):985-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095701" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; COS Cells ; Cercopithecus aethiops ; Cysteine Endopeptidases/*metabolism ; Cytoplasm/*microbiology ; Dysentery, Bacillary/microbiology ; Mice ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; Microtubules/drug effects/*metabolism/ultrastructure ; Movement ; Mutation ; Nocodazole/pharmacology ; Shigella flexneri/enzymology/genetics/*pathogenicity/*physiology ; Tubulin/*metabolism ; Virulence Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...