ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.
    Keywords: Meteorology and Climatology
    Type: 2004 Fall AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: We have gained important insights from prior studies that have suggested relationships between lightning and storm growth, decay, convective rain flux, vertical distribution of storm mass and echo volume in the region, and storm energetics. A study was initiated in the Summer of 1996 to determine how total (in-cloud plus ground) lightning observations might provide added knowledge to the forecaster in the determination and identification of severe thunderstorms and weather hazards in real-time. The Melbourne Weather Office was selected as a primary site to conduct this study because Melbourne is the only site in the world with continuous and open access to total lightning (LDAR) data and a Doppler (WSR-88D) radar. A Lightning Imaging Sensor Data Applications Demonstration (LISDAD) system was integrated into the forecaster's workstation during the Summer 1996 to allow the forecaster to interact in real-time with the multi-sensor data being displayed. LISDAD currently ingests LDAR data, the cloud-to-ground National Lightning Detection Network (NLDN) data, and the Melbourne radar data in f real-time. The interactive features provide the duty forecaster the ability to perform quick diagnostics on storm cells of interest. Upon selection of a storm cell, a pop-up box appears displaying the time-history of various storm parameters (e.g., maximum radar reflectivity, height of maximum reflectivity, echo-top height, NLDN and LDAR lightning flash rates, storm-based vertically integrated liquid water content). This product is archived to aid on detailed post-analysis.
    Keywords: Meteorology and Climatology
    Type: Dec 08, 1997 - Dec 12, 1997; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: This paper will discuss findings of a collaborative lightning research project between National Aeronautics and Space Administration, the Massachusetts Institute of Technology and the National Weather Service office In Melbourne Florida. In August 1996, NWS/MLB received a workstation which incorporates data from the KMLB WSR-88D, Cloud to Ground (CG) stroke data from the National Lightning Detection Network (NLDN), and 3D volumetric lightning data collected from the Kennedy Space Centers' Lightning Detection And Ranging (LDAR) lightning system. The two primary objectives of this lightning workstation, called Lightning Imaging Sensor Data Applications Display (USDAD), are to: observe how total lightning relates to severe convective storm morphology over central Florida, and compare ground based total lightning data (LDAR) to a satellite based lightning detection system. This presentation will focus on objective #1. The LISDAD system continuously displays CG and total lighting activity overlaid on top of the KMLB composite reflectivity product. This allows forecasters to monitor total lightning activity associated with convective cells occurring over the central Florida peninsula and adjacent coastal waters. The LISDAD system also keeps track of the amount of total lightning data, and associated KMLB radar products with individual convective cells occurring over the region. By clicking on an individual cell, a history table displays flash rate information (CG and total lightning) in one minute increments, along with radar parameter trends (echo tops, maximum dBz and height of maximum dBz) every 5 minutes. This history table Is updated continuously, without user intervention, as long as the cell is identified. Reviewing data collected during the 1997 wet season (21 cases) revealed that storms which produced severe weather (hall greater or = 0.75 in. or wind damage) typically showed a rapid rise In total lightning prior to the onset of severe weather. On average, flash rate increases of 25 FPM per minute over a time scale of approximately 5 minutes were common. These pulse severe storms typically reached values of 150 to 200 FPM with some cells exceeding 400 FPM. One finding which could have a direct application to the warning process is that the rapid increase in lightning typically occurred in advance of the warning issuance time. Comparisons between the ending time of the rapid rate increase and the time of when the warning was issued by NWS/MLB meteorologist exhibited a lead time of 8 minutes. It is conceivable that if close monitoring of the LISDAD system by operational meteorologist is routinely performed, warnings for pulse severe storms could be issued up to 4 to 6 minutes earlier than what is issued currently.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storms; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: This paper examines the three dimensional characteristics of lightning flashes and severe storms observed in Central Florida during 1997-1998. The lightning time history of severe and tornadic storms were captured during the on-going ground validation campaign supporting the Lightning Imaging Sensor (LIS) experiment on the Tropical Rainfall Measuring Mission (TRMM). The ground validation campaign is a collaborative experiment that began in 1997 and involves scientists at the Global Hydrology and Climate Center, MIT/Lincoln Laboratories, and the NWS Forecast Office at Melbourne, FL. Lightning signatures that may provide potential early warning of severe storms are being evaluated by the forecasters at the NWS/MLB office. Severe storms with extreme flash rates sometimes exceeding 300 per minute and accompanying rapid increases in flash rate prior to the onset of the severe weather (hall, damaging winds, tornadoes) have been reported by Hodanish et al. and Williams et al. (1998-this conference). We examine the co-evolving changes in storm structure (mass, echo top, shear, latent heat release) and kinematics associated with these extreme and rapid flash rate changes over time. The flash frequency and density are compared with the three dimensional radar reflectivity structure of the storm to help interpret the possible mechanisms producing the extreme and rapidly increasing flash rates. For two tornadic storms examined thus far, we find the burst of lightning is associated with the development of upper level rotation in the storm. In one case, the lightning burst follows the formation of a bounded weak echo region (BWER). The flash rates diminish with time as the rotation develops to the ground in conjunction with the decent of the reflectivity core. Our initial findings suggest the dramatic increase of flash rates is associated with a sudden and dramatic increase in storm updraft intensity which we hypothesize is stretching vertical vorticity as well as enhancing the development of the mixed phase region of the storm. We discuss the importance of these factors in producing both the observed extreme flash rates and the severe weather that follows in these storms and others to be presented.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storms; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: During the early morning hours of February 23 1998, the worst tornado outbreak ever recorded occurred over the central Florida peninsula. At least 7 confirmed tornadoes, associated with 4 supercells, developed, with 3 of the tornadoes reaching F3 intensity. Many of the tornadoes where on the ground for tens of miles, uncommon for the state of Florida. A total of 42 people were killed, with over 250 people injured. During the outbreak, National Weather Service Melbourne, in collaboration with the National Aeronautics and Space Administration and the Massachusetts Institute of Technology was collecting data from a unique lightning observing system called Lightning Imaging Sensor Data Applications Display (LISDAD, Boldi et.al., this conference). This system marries radar data collected from the KMLB WSR-88D, cloud to ground data collected from the National Lightning Detection Network, and total lightning data collected from NASKs Lightning Detection And Ranging system. This poster will display, concurrently, total lightning data (displayed in 1 minute increments), time/height storm relative velocity products from the KMLB WSR-88D, and damage information (tornado/hail/wind) from each of the supercell thunderstorms. The primary objective of this poster presentation is to observe how total lightning activity changes as the convective storm intensifies, and how the lightning activity changes with respect to mesocyclone strength (vortex stretching) and damaging weather on the ground.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storm; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The design and evaluation of the Lightning Imaging Sensor Data Applications Display (LISDAD). The ultimate goal of the LISDAD system is to quantify the utility of total lightning information in short-term, severe-weather forecasting operations. To this end, scientists from NASA, NWS, and MIT organized an effort to study the relationship of lightning and severe-weather on a storm-by-storm, and even cell-by-cell basis for as many storms as possible near Melbourne, Florida. Melbourne was chosen as it offers a unique combination of high probability of severe weather and proximity to major relevant sensors - specifically: NASA's total lightning mapping system at Kennedy Space Center (the LDAR system at KSC); a NWS/NEXRAD radar (at Melbourne); and a prototype Integrated Terminal Weather System (ITWS, at Orlando), which obtains cloud-to-ground lightning Information from the National Lightning Detection Network (NLDN), and also uses NSSL's Severe Storm Algorithm (NSSL/SSAP) to obtain information about various storm-cell parameters. To assist in realizing this project's goal, an interactive, real-time data processing system (the LISDAD system) has been developed that supports both operational short-term weather forecasting and post facto severe-storm research. Suggestions have been drawn from the operational users (NWS/Melbourne) in the design of the data display and its salient behavior. The initial concept for the users Graphical Situation Display (GSD) was simply to overlay radar data with lightning data, but as the association between rapid upward trends in the total lightning rate and severe weather became evident, the display was significantly redesigned. The focus changed to support the display of time series of storm-parameter data and the automatic recognition of cells that display rapid changes in the total-lightning flash rate. The latter is calculated by grouping discrete LDAR radiation sources into lightning flashes using a time-space association algorithm. Specifically, the GSD presents the user with the Composite Maximum Reflectivity obtained from the NWS/NEXRAD. Superimposed upon this background image are placed small black circles indicating the locations of storm cells identified by the NSSL/SSA. The circles become cyan if lightning is detected within the storm-cell; if the cell has lightning rates indicative of a severe-storm, the circle turns red. This paper will: (1) review the design of LISDAD system; (2) present some examples of its data display; and shown results of the lightning based severe-weather prediction algorithm.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storm; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Severe thunderstorms are defined by specific exceedance criteria regarding either wind speed (greater than or equal to 50 kts), hailstone diameter (greater than or equal to 3/4 inch), the occurrence of a tornado, or any combination thereof. Although traditional radar signatures of severe thunderstorms have been well documented, the characteristics of associated total lightning activity (both intracloud and cloud-to-ground) of severe thunderstorms remain poorly established. The reason for this are (1) less than 1% of all storms are actually severe, (2) intracloud lightning, which is typically the dominant form of electrical discharge within thunderstorms, is not routinely measured or recorded, (3) direct visual observations of intracloud lightning are obscured during the daytime, and (4) the migratory nature of many severe thunderstorms can make the accurate detection and mapping of intracloud lightning difficult when using fixed-location sensors. The recent establishment of LISDAD (Lightning Imaging Sensor Data Acquisition and Display - discussed in Goodman et al, this Meeting) has substantially addressed these limitations in east central Florida (ECFL). Analysis of total lightning flash Count histories using the LDAR (Lightning Detection And Ranging) system for known severe thunderstorms (currently irrespective of seasonal aspects and severe storm-type) has revealed flash rates exceeding 1 per second. This appears to be a necessary, but not sufficient,condition for most ECFL severe storm cases. The differences in radar-observed storm structure for high flash rate storms (to include both severe and non-severe categories) will be described together with the timing of peak flash rate vs. the timing of the severe weather manifestation. Comparisons with the satellite-bases OTD (Optical Transient Detector) overhead passes will also be presented when possible.
    Keywords: Meteorology and Climatology
    Type: Dec 08, 1997 - Dec 12, 1997; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The establishment of a consistent behavior of total lightning activity in severe convective storms has been challenged historically by the relative scarcity of these storms combined with the difficulties inherent in documenting the (dominant) intracloud component of total lightning. This situation has changed recently with the abundance of severe weather in central Florida during 1997-98, including the tornado outbreak of February 23, 1998, and with the development of the operational LISDAD system (Boldi et al, this conference) to document these cases. This paper is concerned primarily with the behavior of total lightning in severe weather during the dry season when the Florida atmosphere is most strongly baroclinic. It has been found that all three manifestations of severe weather (ie., hall, wind, tornadoes) are consistently preceded by rapid increases in total flash rate with values often in excess of 100 flashes/minute. Preliminary analysis suggests that this systematic electrical behavior observed in summertime 'pulse severe' storms (Hodanish et al, this conference) also pertains to the more strongly baroclinic, long-track tornadic storms (more common in Oklahoma), as evidenced by the February 23, 1998 outbreak case in central Florida exhibiting two long-tracking F3 tornadoes. The largest flash rates in severe weather anywhere occur in baroclinic conditions at midlatitude. The physical plausibility of flash rates in excess of 100 per minute will be assessed. We will also consider the differences in storm structure for high flash rate storms that are non-severe.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storm; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...