ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office?s GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). The hindcasts are initialized every December from 1959 to 2010 following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from the atmospheric reanalysis (MERRA, the Modern-Era Retrospective Analysis for Research and Applications) generated using the GEOS-5 atmospheric model. The forecast skill of a three-member-ensemble mean is compared to that of an experiment without initialization but forced with observed CO2. The results show that initialization acts to increase the forecast skill of Northern Atlantic SST compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. The annual-mean Atlantic Meridional Overturning Circulation (AMOC) index is predictable up to a 5-year lead time, consistent with the predictable signal in upper ocean heat content over the Northern Atlantic. While the skill measured by Mean Squared Skill Score (MSSS) shows 50% improvement up to 10-year lead forecast over the subtropical and mid-latitude Atlantic, however, prediction skill is relatively low in the subpolar gyre, due in part to the fact that the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region appears to be unrealistic. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6939.2012 , American Geophysical Union conference; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Ensembles of numerical forecasts based on perturbed initial conditions have long been used to improve estimates of both weather and climate forecasts. The Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model, Version 5 (GEOS-5 AOGCM) Seasonal-to-Interannual Forecast System has been used routinely by the GMAO since 2008, the current version since 2012. A coupled reanalysis starting in 1980 provides the initial conditions for the 9 month experimental forecasts. Once a month, sea surface temperature from a suite of 11 ensemble forecasts is contributed to the North American Multi-Model Ensemble (NMME) consensus project, which compares and distributes seasonal forecasts of ENSO events. Since June 2013, GEOS-5 forecasts of the Arctic sea-ice distribution were provided to the Sea-Ice Outlook project. The seasonal forecast output data includes surface fields, atmospheric and ocean fields, as well as sea ice thickness and area, and soil moisture variables. The current paper aims to document the characteristics of the GEOS-5 seasonal forecast system and to highlight forecast biases and skills of selected variables (sea surface temperature, air temperature at 2 m, precipitation and sea ice extent) to be used as a benchmark for the future GMAO seasonal forecast systems and to facilitate comparison with other global seasonal forecast systems.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN45265 , Climate Dynamics (ISSN 0930-7575) (e-ISSN 1432-0894); 1-27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The GEOS-5 AOGCM is being used to conduct the CMIP5 decadal prediction suite. The model is comprised of the GEOS-5 AGCM coupled to MOM4 and CICE, with aerosol distributions from GOCART. The decadal predictions are initialized from the GEOS Ocean-Ice reanalysis that is coupled to MERRA, GMAO's atmospheric reanalysis. Perturbations are generated using a bred vector approach. The integrations are still underway. The system and preliminary results will be presented.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.4478.2011 , Aspen Global Change Institute Workshop: Making Sense of the Multi-Model Decadal Prediction Experiments from CMIP5; Jun 26, 2011 - Jul 01, 2011; Aspen, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...