ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (3)
  • 1
    Publication Date: 2019-07-18
    Description: Measurements and analysis of the impact of deep convection on tropopause layer moisture are easily confounded by difficulties making precise observations with sufficient spatial coverage before and after convective events and difficulties distinguishing between changes due to local convection versus large-scale advection. The interactions between cloud microphysics and dynamics in the convective transport of moisture into the tropopause layer also result in a sufficiently complex and poorly characterized system to allow for considerable freedom in theoretical models of stratosphere-troposphere exchange. In this work we perform detailed large-eddy simulations with an explicit cloud microphysics model to study the impact of deep convection on tropopause layer moisture profiles observed over southern Florida during CRYSTALFACE. For four days during the campaign (July 11, 16, 28, and 29) we initialize a 100-km square domain with temperature and moisture profiles measured prior to convection at the PARSL ground site, and initiate convection with a warm bubble that produces an anvil at peak elevations in agreement with lidar and radar observations on that day. Comparing the moisture field after the anvils decay with the initial state, we find that convection predominantly moistens the tropopause layer (as defined by minimum temperature and minimum potential temperature lapse rate), although some drying is also predicted in localized layers. We will also present results of sensitivity tests designed to separate the roles of cloud microphysics and dynamics.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: Remote sensing observations, such as those from AURA, are necessary to understand the role of cirrus in determining the radiative and humidity budgets of the upper troposphere. Using these measurements quantitatively requires comparisons with in situ measurements that have previously been validated. However, a direct comparison of remote and in situ measurements is difficult due to the requirement that the spatial and temporal overlap be sufficient in order to guarantee that both instruments are measuring the same air parcel. A difficult as this might be for gas phase intercomparisons, cloud inhomogeneities significantly exacerbate the problem for cloud ice water content measurements. The CRYSTAL-FACE mission provided an opportunity to assess how well such intercomparisons can be performed and to establish flight plans that will be necessary for validation of future satellite instruments. During CRYSTAL-FACE, remote and in situ instruments were placed on different aircraft (NASA's ER-2 and WB-59, and the two planes flew in tandem so that the in situ payload flew in the field of view of the remote instruments. We show here that, even with this type of careful flight planning, it is not always possible to guarantee that remote and in situ instruments are viewing the same air parcel. We use ice water data derived from the in situ Harvard Total Water (HV-TW) instrument, and the remote Goddard Cloud Radar System (CRS) and show that agreement between HV-TW and CRS is a strong function of the horizontal separation and the time delay between the aircraft transects. We also use a cloud model to simulate possible trajectories through a cloud and evaluate the use of statistical analysis in determining the agreement between the two instruments. This type of analysis should guide flight planning for future intercomparison efforts, whether for aircraft or satellite-borne instrumentation.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-23
    Description: Convective clouds play an important role in the Earth's climate system as a driver of large-scale circulations and a primary mechanism for the transport of heat, moisture, aerosols, and momentum throughout the troposphere. Despite their climatic importance, multi-scale models continue to have persistent biases produced by insufficient representation of convective clouds. This is the result of an incomplete understanding of key processes such as convective initiation, updraft and downdraft dynamics, cloud and precipitation microphysics, and aerosol-convection interactions.The Aerosol-Cloud-Precipitation-Climate Initiative, an international research group dedicated to advancing understanding of aerosol impacts on clouds relevant to climate, has identified the Houston, Texas region as an optimal location for targeted studies of aerosol-convection interactions within frequently developing isolated deep convection. Houston lies within a humid subtropical climate regime, where onshore flow and sea-breeze convection interact with a range of aerosol conditions associated with Houston's urban and industrial emissions. Pilot studies have suggested that convective clouds in this region are potentially significantly impacted by the varying aerosol conditions.
    Keywords: Meteorology and Climatology
    Type: DOE/SC-ARM-19-017 , GSFC-E-DAA-TN72709
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...