ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We investigate the interannual relationship among clouds, their radiative effects, and two key indices of the atmospheric circulation: the latitudinal positions of the Hadley cell edge and the midlatitude jet. From reanalysis data and satellite observations, we find a clear and consistent relationship between the width of the Hadley cell and the high cloud field, statistically significant in nearly all regions and seasons. In contrast, shifts of the midlatitude jet correlate significantly with high cloud shifts only in the North Atlantic region during the winter season. While in that region and season poleward high cloud shifts are associated with shortwave radiative warming, over the Southern Oceans during all seasons they are associated with shortwave radiative cooling. Finally, a trend analysis reveals that poleward high cloud shifts observed over the 1983-2009 period are more likely related to Hadley cell expansion, rather than poleward shifts of the midlatitude jets.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN32209 , Geophysical Research Letters; umn 43; 9; 4594 - 4601
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-13
    Description: Recent analyses of global climate models suggest that uncertainty in the coupling between mid-latitude clouds and the atmospheric circulation contributes to uncertainty in climate sensitivity. However, the reasons behind model differences in the cloud-circulation coupling have remained unclear. Here, we use a global climate model in idealized aquaplanet setup to show that the Southern Hemisphere climatological circulation, which in many models is biased equatorward, contributes to the model differences in the cloud-circulation coupling. For the same poleward shift of the Hadley circulation (HC) edge, models with narrower climatological HCs exhibit stronger mid-latitude cloud-induced shortwave warming than models with wider climatological HCs. This cloud-induced radiative warming results predominantly from a subsidence warming that decreases cloud fraction and is stronger for narrower HCs because of a larger meridional gradient in the vertical velocity. A comparison of our aquaplanet results with comprehensive climate models suggests that about half of the model uncertainty in the mid-latitude cloud-circulation coupling stems from this impact of the circulation on the large-scale temperature structure of the atmosphere, and thus could be removed by improving the climatological circulation in models. This illustrates how understanding of large-scale dynamics can help reduce uncertainty in clouds and their response to climate change.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN59034 , Journal of Climate (ISSN 0894-8755) (e-ISSN 1520-0442); 31; 24; 10013–10020
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...