ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: An objective assessment of the impact of a new cloud scheme, called Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme (McRAS) (together with its radiation modules), on the finite volume general circulation model (fvGCM) was made with a set of ensemble forecasts that invoke performance evaluation over both weather and climate timescales. The performance of McRAS (and its radiation modules) was compared with that of the National Center for Atmospheric Research Community Climate Model (NCAR CCM3) cloud scheme (with its NCAR physics radiation). We specifically chose the boreal summer months of May and June 2003, which were characterized by an anomalously wet eastern half of the continental United States as well as northern regions of Amazonia. The evaluation employed an ensemble of 70 daily 10-day forecasts covering the 61 days of the study period. Each forecast was started from the analyzed initial state of the atmosphere and spun-up soil moisture from the first-day forecasts with the model. Monthly statistics of these forecasts with up to 10-day lead time provided a robust estimate of the behavior of the simulated monthly rainfall anomalies. Patterns of simulated versus observed rainfall, 500-hPa heights, and top-of-the-atmosphere net radiation were recast into regional anomaly correlations. The correlations were compared among the simulations with each of the schemes. The results show that fvGCM with McRAS and its radiation package performed discernibly better than the original fvGCM with CCM3 cloud physics plus its radiation package. The McRAS cloud scheme also showed a reasonably positive response to the observed sea surface temperature on mean monthly rainfall fields at different time leads. This analysis represents a method for helpful systematic evaluation prior to selection of a new scheme in a global model.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); Voluem 111; D06201
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Analysis will be presented which explores the impact of land conditions on monthly to seasonal climate simulations in a variety of atmospheric general circulation models (AGCMs). In one set of experiments, the Geophysical Fluid Dynamics Laboratory (GDFL) AGCM is used to explore the nature of soil-moisture predictability and associated climate predictability as an initial value problem. For another set of experiments, the Center for Ocean Land Atmosphere (COLA) and the Goddard Earth Observing System 2 (GEOS-2) AGCMs are used to investigate the impact of realistic snow initialization and assimilation in retrospective climate forecasts for the northern hemisphere spring (March-June).
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; 23; 142; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Both NLDAS Phase 1 (1996-2007) and Phase 2 (1979-present) datasets have been evaluated against in situ observational datasets, and NLDAS forcings and outputs are used by a wide variety of users. Drought indices and drought monitoring from NLDAS were recently examined by Mo et al. (2010) and Sheffield et al. (2010). In this poster, we will present results analyzing NLDAS Phase 2 forcings and outputs for 3 North American Case studies being analyzed as part of the NOAA MAPP Drought Task Force: (1) Western US drought (1998- 2004); (2) plains/southeast US drought (2006-2007); and (3) Current Texas-Mexico drought (2011-). We will examine percentiles of soil moisture consistent with the NLDAS drought monitor.
    Keywords: Meteorology and Climatology
    Type: GSFS.ABS.00230.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: 2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http://ldas.gsfc.nasa.gov/nldas/) data set, with high spatial and temporal resolutions (0.125? x 0.125?, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.6215.2012 , American Geophysical Union (AGU) Chapman Conference on Remote Sensing of the Terrestrial Water Cycle; Feb 19, 2012 - Feb 22, 2012; Kona, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The North American Land Data Assimilation System (NLDAS) is a collaborative project between NASA GSFC, NOAA, Princeton University, and the University of Washington. NLDAS has created surface meteorological forcing data sets using the best-available observations and reanalyses. The forcing data sets are used to drive four separate land-surface models (LSMs), Mosaic, Noah, VIC, and SAC, to produce data sets of soil moisture, snow, runoff, and surface fluxes. NLDAS hourly data, accessible from the NASA GES DISC Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings, are widely used by various user communities in modeling, research, and applications, such as drought and flood monitoring, watershed and water quality management, and case studies of extreme events. More information is available at http://ldas.gsfc.nasa.gov/. To further facilitate analysis of water and energy budgets and trends, NLDAS monthly data sets have been recently released by NASA GES DISC.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN6848 , American Geophysical Union (AGU) Fall Meeting; Dec 09, 2012 - Dec 13, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The North American Land Data Assimilation System (NLDAS) is a collaboration project between NASA/GSFC, NOAA, Princeton Univ., and the Univ. of Washington. NLDAS has created a surface meteorology dataset using the best-available observations and reanalyses the backbone of this dataset is a gridded precipitation analysis from rain gauges. This dataset is used to drive four separate land-surface models (LSMs) to produce datasets of soil moisture, snow, runoff, and surface fluxes. NLDAS datasets are available hourly and extend from Jan 1979 to near real-time with a typical 4-day lag. The datasets are available at 1/8th-degree over CONUS and portions of Canada and Mexico from 25-53 North. The datasets have been extensively evaluated against observations, and are also used as part of a drought monitor. NLDAS datasets are available from the NASA GES DISC and can be accessed via ftp, GDS, Mirador, and Giovanni. GES DISC news articles were published showing figures from the heat wave of 2011, Hurricane Irene, Tropical Storm Lee, and the low-snow winter of 2011-2012. For this presentation, Giovanni-generated figures using NLDAS data from the derecho across the U.S. Midwest and Mid-Atlantic will be presented. Also, similar figures will be presented from the landfall of Hurricane Isaac and the before-and-after drought conditions of the path of the tropical moisture into the central states of the U.S. Updates on future products and datasets from the NLDAS project will also be introduced.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN7047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN20217 , AGU Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: 2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http:ldas.gsfc.nasa.govnldas) data set, with high spatial and temporal resolutions (0.125 x 0.125, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN11634
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN11630 , Journal of Hydrometeorology; 15; 1; 300-319
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...