ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 122 (1984), S. 376-391 
    ISSN: 1420-9136
    Keywords: Hydrogen emission ; earthquake ; fault creep ; serpentinization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1–10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO−H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Space-borne observations of CO2 from the Orbiting Carbon Observatory-2 are used to characterize the response of the tropical atmospheric CO2 concentrations to the strong El Nino event of 2015-2016. Correlations between atmospheric CO2 growth rate and the El Nino Southern Oscillation have been well known; however, the magnitude of the correlation and the timing of the responses of oceanic and terrestrial carbon cycle remain poorly constrained in space and time. Here we use space-based CO2 observations to confirm that the tropical Pacific Ocean does play an early and important role in modulating the changes in atmospheric CO2 concentrations during El Nino events phenomenon inferred but not previously observed due to lack of high-density, broad-scale CO2 observations over the Tropics.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN45071 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 358; 6360; eaam5776
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...