ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: We have analyzed GRACE Level 1B data to resolve time-variable gravity using a local mascon approach. The spherical harmonic solutions released to date resolve the signal from surface hydrology over land areas at spatial scales of 750 to 1000 km over one month intervals [Wahr et al., 2004; Tapley et al., 2004]. In our local approach, we solve explicitly for the mass of water in surface blocks using only the KBRR data collected as GRACE overflies the region of interest. The local representation of gravity minimizes leakage of errors from other areas due to aliasing or mismodelling. In this paper, we report on the analysis of GRACE data from January 2003 through August 2004 over three regions: the Amazon, the Indian subcontinent, and the continental United States. We solve for mass change at 10-day intervals using 4 deg x 4 deg blocks. We give an overview of our latest results, and we present the results of error analyses, and comparisons to both hydrology models and in-situ data.
    Keywords: Numerical Analysis
    Type: IAG Joint Assembly; Aug 22, 2005 - Aug 26, 2005; Cairns; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfully placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which has a primary measurement of short-pulse laser- ranging to the Earth s surface at 1064nm wavelength at a rate of 40 pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS s surface returns, the spots from which the laser energy reflects on the Earth s surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. ICESat laser altimeter data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers in order to calibrate pointing, ranging and timing. The calibration methodology and current calibration results are discussed along with future efforts.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Meeting; Dec 08, 2003 - Dec 12, 2003; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: We have developed an innovative analysis strategy for analysis of GRACE data. We have developed a capability to recover local/regional gravity changes using non-global functional representations (Le. surface anomalies vs. global spherical harmonics) h m the GRACE data. Our approach can take regularly or irregularly shaped regions, populate them with surface anomaly blocks of suitable area and solve for the resulting mass flux with respect to a mean field. The surface mass or gravity anomalies benefit from the application of spatial and temporal constraints to add stability to the solution. In this paper we discuss the analysis of four months of GRACE Level 1B data (accelerometry, intersatellite data, attitude information and precise orbits) from July to October 2003, recently released to the GRACE Science Team. We compare and contrast this local approach to gravity recovery, with the more conventional approach using global spherical harmonics. We review simulations of this technique which allow us to pinpoint optimum strategies for applications of this local gravity recovery approach.
    Keywords: Numerical Analysis
    Type: Joint CHAMP/GRACE Science Meeting; Jul 06, 2004 - Jul 08, 2004; Potsdam; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...