ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Metals and Metallic Materials  (2)
  • 1
    Publication Date: 2019-07-19
    Description: Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.
    Keywords: Metals and Metallic Materials
    Type: M11-0543 , 2011 Emerging and Enabling Technology Conference; Jul 25, 2011 - Jul 29, 2011; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Welding at NASA's Marshall Space Flight Center (MSFC), Huntsville, Alabama, has taken a new direction through the last 10 years. Fusion welding processes, namely variable polarity plasma arc (VPPA) and tungsten inert gas (TIG) were once the corner stone of welding development in the Space Flight Center's welding laboratories, located in the part of MSFC know as National Center for Advanced Manufacturing (NCM). Developed specifically to support the Shuttle Program's External Tank and later International Space Station manufacturing programs, was viewed as the paragon of welding processes for joining aluminum alloys. Much has changed since 1994, however, when NASA's Jeff Ding brought the FSW process to the NASA agency. Although, at that time, FSW was little more than a "lab curiosity", NASA researchers started investigating where the FSW process would best fit NASA manufacturing programs. A laboratory FSW system was procured and the first welds were made in fall of 1995. The small initial investment NASA made into the first FSW system has certainly paid off for the NASA agency in terms of cost savings, hardware quality and notoriety. FSW is now a part of Shuttle External Tank (ET) production and the preferred weld process for the manufacturing of components for the new Crew Launch Vehicle (CLV) and Heavy Lift Launch Vehicle (HLLV) that will take this country back to the moon. It is one of the solid state welding processes being considered for on-orbit space welding and repair, and is of considerable interest for Department of Defense @OD) manufacturing programs. MSFC involvement in these and other programs makes NASA a driving force in this country's development of FSW and other solid state welding technologies. Now, a decade later, almost the entire on-going welding R&D at MSFC now focuses on FSW and other more advanced solid state welding processes.
    Keywords: Metals and Metallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...