ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1421
    Keywords: Metals ; pentasulfide ; metal-pentasulfide complexes ; stability constants ; voltammetry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A series of stable pentasulfide complexes of the common base metals, Mn, Fe, Co, Ni, Cu and Zn exist in aqueous solutions at ambient temperatures. Pure sodium pentasulfide was prepared and reacted with the divalent cations of Mn, Fe, Co, Ni, Cu and Zn in aqueous solution at ambient temperature. The S52- complexes were found to exist as determined by voltammetric methods. Pentasulfide complexes with compositions assigned as [M(η1-S5)] and [M2(μ- S5)]2+ occur for Mn, Fe, Co and Ni where only one terminal S atom in the S52- binds to one metal (η1 = mono-dentate ligand or M-S-S-S-S-S, μ = ligand bridging two metal centers or M-S-S-S-S-S-M). Conditional stability constants are similar for all four metals with log β1 between 5.3 and 5.7 and log β2 between 11.0 and 11.6. The constants for these pentasulfide complexes are similar to the tetrasulfide complexes and are approximately 0.4–0.8 log units higher than for comparable bisulfide complexes [M(SH)]+ as expected based on the higher nucleophilicity of S52- compared to HS-. Voltammetric results indicate that these are labile complexes. As with the bisulfide and tetrasulfide complexes, Zn(II) and Cu(II) are chemically distinct from the other metals. Zn(II) reacts with pentasulfide to form a stable monomeric pentasulfide chelate, [Zn(η1-S5)] with log β = 8.7. Cu(II) reacts with pentasulfide to form a complex with the probable stoichiometry [Cu(S5)]2 with log β estimated to be 20.2. As with the other four metals, these complexes are comparable with the tetrasulfide complexes. Discrete voltammetric peaks are observed for these complexes and indicate they are electrochemically inert to dissociation. Reactions of Zn(II) and Cu(II) also lead to significant breakup of the polysulfide. The relative strength of the complexes is Cu 〉 Zn 〉 Mn, Fe, Co, Ni. Cu displaces Zn from [Zn(η1- S5)] and both Cu and Zn displace Mn, Fe, Co and Ni from their pentasulfide complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 1-10 
    ISSN: 0730-2312
    Keywords: bHLH functional activity ; osteoblast differentiation ; gene expression ; osteogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To examine possible mechanisms underlying osteoblast differentiation from mesenchymal stem cells, we investigated bHLH functional activity in cell lines representing different stages of osteoblast maturation. Interaction of nuclear proteins with oligonucleotides corresponding to various bHLH binding sequences (known as E-boxes) was determined in mobility shift assays. Both ADD-1 oligonucleotide, a binding site for transcription factor ADD-1, and OCE-1, an E-box from osteocalcin promoter, produced retarded bands after incubation with nuclear extracts from osteogenic cells. Cells at different stages of osteogenic maturation demonstrated similar patterns and intensity of binding, as did cells treated with different osteogenic inducers. Binding to ADD-1 and OCE-1 was not tissue-specific as it was also observed in fibroblastic 10T1/2 cells. MEF-1 oligonucleotide, the E-box sequence from the muscle creatine kinase enhancer, demonstrated no changes in binding with nuclear extracts from moderately differentiated (W-20) or relatively mature (ROS 17/2.8) cells under any conditions tested. However, in poorly differentiated R1-2J cells, which do not express osteogenic markers unless treated with dexamethasone, induction of differentiation was reflected in transient inhibition of binding to MEF-1. Inhibition of binding was not seen under differentiation-restrictive conditions. Promoter-reporter studies also demonstrated inhibition of MEF-1 driven CAT expression by dexamethasone under differentiation-permissive conditions in R1-2J cells. These data suggest that bHLH gene expression is not required for the early steps of osteogenesis; moreover, inhibition of bHLH protein binding to a MEF1-type E box might be an integral part of osteogenic commitment. J. Cell. Biochem. 65:1-10. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...