ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mechanical Engineering  (2)
  • Spacecraft Design, Testing and Performance; Structural Mechanics; Cybernetics, Artificial Intelligence and Robotics  (1)
  • Structural Mechanics; Statistics and Probability; Man/System Technology and Life Support  (1)
  • 1
    Publication Date: 2019-07-13
    Description: We describe a robotic platform for traversing and manipulating a modular 3D lattice structure. The robot is designed to operate within a specifically structured environment, which enables low numbers of degrees of freedom (DOF) compared to robots performing comparable tasks in an unstructured environment. This allows for simple controls, as well as low mass and cost. This approach, designing the robot relative to the local environment in which it operates, results in a type of robot we call a "relative robot." We describe a bipedal robot that can locomote across a periodic lattice structure, as well as being able to handle, manipulate, and transport building block parts that compose the lattice structure. Based on a general inchworm design, the robot has added functionality for traveling over and operating on a host structure.
    Keywords: Spacecraft Design, Testing and Performance; Structural Mechanics; Cybernetics, Artificial Intelligence and Robotics
    Type: ARC-E-DAA-TN38470 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: It is widely assumed that human exploration beyond Earth's orbit will require vehicles capable of providing long duration habitats that simulate an Earth-like environment - consistent artificial gravity, breathable atmosphere, and sufficient living space- while requiring the minimum possible launch mass. This paper examines how the qualities of digital cellular solids - high-performance, repairability, reconfigurability, tunable mechanical response - allow the accomplishment of long-duration habitat objectives at a fraction of the mass required for traditional structural technologies. To illustrate the impact digital cellular solids could make as a replacement to conventional habitat subsystems, we compare recent proposed deep space habitat structural systems with a digital cellular solids pressure vessel design that consists of a carbon fiber reinforced polymer (CFRP) digital cellular solid cylindrical framework that is lined with an ultra-high molecular weight polyethylene (UHMWPE) skin. We use the analytical treatment of a linear specific modulus scaling cellular solid to find the minimum mass pressure vessel for a structure and find that, for equivalent habitable volume and appropriate safety factors, the use of digital cellular solids provides clear methods for producing structures that are not only repairable and reconfigurable, but also higher performance than their conventionally manufactured counterparts.
    Keywords: Structural Mechanics; Statistics and Probability; Man/System Technology and Life Support
    Type: ARC-E-DAA-TN39675 , IEEE Aerospace Conference 2017; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: We describe analytical methods for the design of the discrete elements of ultralight lattice structures. This modular, building block strategy allows for relatively simple element manufacturing, as well as relatively simple robotic assembly of low mass density structures on orbit, with potential for disassembly and reassembly into highly varying and large structures. This method also results in a structure that is easily navigable by relatively small mobile robots. The geometry of the cell can allow for high packing efficiency to minimize wasted payload volume while maximizing structural performance and constructability. We describe the effect of geometry choices on the final system mechanical properties, manufacturability of the components, and automated robotic constructability of a final system. Geometry choices considered include building block complexity, symmetry of the unit cell, and effects of vertex, edge, and face connectivity of the unit cell. Mechanical properties considered include strength scaling, modulus scaling, and structural performance of the joint, including proof load, shear load, mass, and loading area; as well as validation and verification opportunities. Manufacturability metrics include cost and time, manufacturing method (COTS versus custom), and tolerances required. Automated constructability metrics include local effects of loads imparted to the structure by the robot and assembly complexity, encompassing the ability of the robot to clamp and number of placement motions needed for assembly.
    Keywords: Mechanical Engineering
    Type: ARC-E-DAA-TN59962
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We describe analytical methods for the design of the discrete elements of ultralight lattice structures. This modular, building block strategy allows for relatively simple element manufacturing, as well as relatively simple robotic assembly of low mass density structures on orbit, with potential for disassembly and reassembly into highly varying and large structures. This method also results in a structure that is easily navigable by relatively small mobile robots. The geometry of the cell can allow for high packing efficiency to minimize wasted payload volume while maximizing structural performance and constructability. We describe the effect of geometry choices on the final system mechanical properties and automated robotic constructability of a final system. Geometric properties considered include number of attachments per voxel, number of attachments per coefficient of volume, and effects of vertex, edge, and face connectivity of the unit cell. Mechanical properties considered include strength scaling, modulus scaling, and packing efficiency of the lattice. Automated constructibility metrics include volume allowance for an end-effector, strut clearance angle for an end-effector, and packing efficiency. These metrics were applied to six lattice unit cell geometries: cube, cuboctahedron, octahedron, octet, rhombic dodecahedron, and truncated octahedron. A case study is presented to determine the most suitable lattice system for a specific set of strength and modulus scaling requirements while optimizing for ease of robotic assembly.
    Keywords: Mechanical Engineering
    Type: ARC-E-DAA-TN62635 , Institute of Electrical and Electronics Engineers (IEEE) Aerospace Conference; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...