ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Additive Manufacturing (AM) of metals is a processing technology that has significantly matured over the last decade. For liquid propellant rocket engines, the advantages of AM for replacing conventional manufacturing of complicated and expensive metallic components and assemblies are very attractive. AM can significantly reduce hardware cost, shorten fabrication schedules, increase reliability by reducing the number of joints, and improve hardware performance by allowing fabrication of designs not feasible by conventional means. The NASA Marshall Space Flight Center (MSFC) has been involved with various forms of metallic additive manufacturing for use in liquid rocket engine component design, development, and testing since 2010. The AM technique most often used at the NASA MSFC has been powder-bed fusion or selective laser melting (SLM), although other techniques including laser directed energy deposition (DED), arc-based deposition, and laser-wire cladding techniques have also been used to develop several components. The purpose of this paper is to discuss the various internal programs at the NASA MSFC using AM to develop combustion devices hardware. To date at the NASA MSFC, combustion devices component hardware ranging in size from 100 lbf to 35,000 lbf have been designed and manufactured using SLM and deposition-based AM processes, and many of these pieces have been hot-fire tested. Combustion devices component hardware have included thrust chamber injectors, injector components such as faceplates, regeneratively-cooled combustion chambers, regeneratively-cooled nozzles, gas generator and preburner hardware, and augmented spark igniters. Ongoing and future developments for combustion devices have also included design of components sized for boost-class engines. Several design and hot-fire test iterations have been completed on these subscale and larger scale components, and a summary of these results will be presented as well.
    Keywords: Mechanical Engineering; Spacecraft Propulsion and Power
    Type: M18-6805 , AIAA/SAE/ASEE Joint Propulsion Conference 2018; Jul 07, 2018 - Jul 13, 2018; Cincinnatti, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...