ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Marine Geosciences and Applied Geophysics  (2)
  • Nootka transform fault  (1)
Collection
Language
Years
  • 1
    Publication Date: 2014-08-14
    Description: Several slope failures are observed near the deformation front on the frontal ridges of the northern Cascadia accretionary margin off Vancouver Island. The cause for these events is not clear, although several lines of evidence indicate a possible connection between the occurrence of gas hydrate and submarine landslide features. The presence of gas hydrate is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ~265–275 m beneath the seafloor (mbsf), as interpreted from vertical-incidence and wide-angle seismic data beneath the ridge crests of the frontal ridges. For one slide, informally called Slipstream Slide, the velocity structure inferred from tomography analyses shows anomalous high velocities values of about 2.0 km s –1 at shallow depths of 100 mbsf. The estimated depth of the glide plane (100 ± 10 m) closely matches the depth of these shallow high velocities. In contrast, at a frontal ridge slide just to the northwest (informally called Orca Slide), the glide plane occurs at the same depth as the current BSR. Our new results indicate that the glide plane of the Slipstream slope failure is associated with the contrast between sediments strengthened by gas hydrate and overlying sediments where little or no hydrate is present. In contrast, the glide plane of Orca Slide is between sediment strengthened by hydrate underlain by sediments beneath the gas hydrate stability zone, possibly containing free gas. Additionally, a set of margin perpendicular normal faults are imaged from seafloor down to BSR depth at both frontal ridges. As inferred from the multibeam bathymetry, the estimated volume of the material lost during the slope failure at Slipstream Slide is about 0.33 km 3 , and ~0.24 km 3 of this volume is present as debris material on the ocean basin floor. The 20 per cent difference is likely due to more widely distributed fine sediments not easily detectable as bathymetric anomalies. These volume estimates on the Cascadia margin are approaching the mass failure volume for other slides that have generated large tsunamis—for example 1–3 km 3 for a 1998 Papua New Guinea slide.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-13
    Description: This paper applies nonlinear Bayesian inversion to marine controlled source electromagnetic (CSEM) data collected near two sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on the northern Cascadia Margin to investigate subseafloor resistivity structure related to gas hydrate deposits and cold vents. The Cascadia margin, off the west coast of Vancouver Island, Canada, has a large accretionary prism where sediments are under pressure due to convergent plate boundary tectonics. Gas hydrate deposits and cold vent structures have previously been investigated by various geophysical methods and seabed drilling. Here, we invert time-domain CSEM data collected at Sites U1328 and U1329 of IODP Expedition 311 using Bayesian methods to derive subsurface resistivity model parameters and uncertainties. The Bayesian information criterion is applied to determine the amount of structure (number of layers in a depth-dependent model) that can be resolved by the data. The parameter space is sampled with the Metropolis–Hastings algorithm in principal-component space, utilizing parallel tempering to ensure wider and efficient sampling and convergence. Nonlinear inversion allows analysis of uncertain acquisition parameters such as time delays between receiver and transmitter clocks as well as input electrical current amplitude. Marginalizing over these instrument parameters in the inversion accounts for their contribution to the geophysical model uncertainties. One-dimensional inversion of time-domain CSEM data collected at measurement sites along a survey line allows interpretation of the subsurface resistivity structure. The data sets can be generally explained by models with 1 to 3 layers. Inversion results at U1329, at the landward edge of the gas hydrate stability zone, indicate a sediment unconformity as well as potential cold vents which were previously unknown. The resistivities generally increase upslope due to sediment erosion along the slope. Inversion results at U1328 on the middle slope suggest several vent systems close to Bullseye vent in agreement with ongoing interdisciplinary observations.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-11
    Description: Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from 〉20 years of investigations to demonstrate the nature of fluid-flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near-seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100–300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite-to-seafloor reflection polarity, and are associated with frequency reduction and velocity push-down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonconformable high-amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom-video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios 〈500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate-related bottom-simulating reflectors are widespread and occur at depths indicating heat flow values of 80–90 mW/m2.
    Keywords: 551 ; fluid flow ; Nootka transform fault ; gas hydrate ; intrusion ; heat flow
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...